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1. Introduction

Human-caused climate change has driven changes that are now detectable in
the global water cycle since mid- 20th century (Chapter 8 of the last report
of the Intergovernmental Panel on Climate Change, IPCC (Masson-Delmotte
et al., 2021)). It is further projected with high confidence that there will be an
increased variability of the water cycle in most regions of the world and under all
emission scenarios (Masson-Delmotte et al., 2021). The IPCC also concluded
that there is evidence of observed changes and attribution to the human influ-
ence for several types of extremes since the last report (IPCC, 2014), particularly
regarding extreme precipitation, drought, tropical cyclones, and compound ex-
tremes.

The robustness of the response of each term of the water budget (evaporation,
precipitation, and the inflow and outflow of water vapor) to a warming climate
has been assessed in many studies (Held and Soden, 2006) matching observation
with General Circulation Models (GCM) simulations. The predicted changes in
the water cycle by the direct influence of global warming are linked to surface
heating and the increased water holding capacity. The former induces increased
evaporation and surface drying, increasing the risk of drought. The latter leads
to increased water vapor in the atmosphere, hence more intense precipitation
events, increasing the flooding risk (Trenberth, 2011). At global scales, global
climate modeling studies suggest that extreme precipitation events will intensify
in proportion to their intensity (O’Gorman and Schneider, 2009; Pendergrass,
2018), with the most extreme events exhibiting the highest rate of intensifica-
tion.



Chapter 1. Introduction

More specifically, extreme precipitation events are the most common natural
hazards that affect the Mediterranean region and are considered to have the
greatest negative impact due to their frequency and the high vulnerability of
densely populated areas (Llasat et al., 2010; Tramblay and Somot, 2018). The
Mediterranean region is also considered a ’hot spot’ for the impacts of ongoing
climate change (Giorgi, 2006), making it particularly vulnerable to the effects
of extreme precipitation events. Extreme events will become more frequent,
greatly impacting water resources. This is extremely relevant in terms of water
scarcity (IPCC, 2014; Lionello, 2012). Specifically for the Mediterranean region,
the trend confirmed by climate scenarios is that of drought and decreasing soil
moisture (Grillakis, 2019; Wilhite and Pulwarty, 2017). One of the most im-
portant and most impacted water resources by climate change in Europe are
lakes (George, 2010).

Thus, the first aspect addressed by the thesis is if there is a possibility of mon-
itoring the water budget of lakes in the Mediterranean region under climate
change and if it is possible to infer the climate extremes’ impact on the lakes
water mass balance variations with the use of modeling, specifically GCMs. In-
deed, GCMs and modeling in general, by describing all the components of the
atmosphere from fundamental physical-mathematical energy-momentum and
mass conservation laws, provide physical quantification that enables us to ex-
amine the driving forces of atmospheric phenomena.

Moreover, the analysis is carried out to control how GCMs are able to reproduce
such events in the region. The use of GCMs is also justified by the fact that the
latter allows for the use of consistent spatial and temporal data and are available
for long periods of time. Furthermore, GCMs provide relevant climate datasets,
known as reanalyses (for example ERA5 and ERA5 Land, the reanalysis of the
European Centre for Medium-Range Weather Forecasting (ECMWF) (Hersbach
et al., 2020)), which can be used for this purpose and have proven useful in
many contexts of hydrogeological modeling of inland water basins (Mahto and
Mishra, 2019; Tarek et al., 2020) that are greatly affected by climate change
(Schneider and Hook, 2010; Wang et al., 2018).

However, by using GCMs and reanalysis it is found that, even if they actually
provide a reliable source for hydrological modeling and are capable of reproduc-
ing well the water cycle with its variability, there are some drawbacks. Indeed,
all the assessed (and projected) changes in the water cycle budget of the at-
mosphere, specifically regarding precipitation, are uncertain, due to model un-
certainty (Masson-Delmotte et al., 2021). Indeed, although GCMs have made
significant progress in simulating the Earth’s climate, there are still many chal-
lenges in accurately representing the regional patterns, temporal variations, and
combination of frequency and intensity of precipitation (Trenberth et al., 2003;
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Chapter 1. Introduction

Dai, 2006; Meehl et al., 2005). Especially regarding precipitation extremes, are
not simulated reliably, since there is a discrepancy between the observed and
modeled rate of increase of precipitation with warming (O’Gorman and Schnei-
der, 2009).

The increase in precipitation is correlated with the increase in water vapor
amount. The latter is constrained by the Clausius-Clapeyron (CC) relationship,
which predicts an increase in the saturation water vapor pressure (the water
holding capacity of air) of approximately 7% per °C rise in temperature (Held
and Soden, 2006). For surface temperatures near those of the present-day trop-
ics, the precipitation extremes are thought to increase at a rate close to this
thermodynamic rate (Muller et al., 2011) In contrast, model-predicted changes
to global precipitation increase happen at a rate of 2% per °C rise (CMIP3),
significantly less than the CC predicted rate (Naegele, 2016). This discrepancy
firstly highlights the fact that there are other processes, mainly energetic ones,
that constrain precipitation besides the moisture availability (Naegele, 2016)
and secondly, underlines the fact that GCMs have produced unrealistically small
precipitation increases with warming. In summary, models are not able to accu-
rately reproduce extreme events, particularly those related to deep convection
such as precipitation. This is because convective precipitation remains a major
source of systematic errors in weather prediction and climate models (Reynolds
et al., 2020). Moreover, GCMs do not resolve convection explicitly, but their
convective processes, thus cloud formation and precipitation, are parametrized
(expressed as a function of the model prognostic variables). Thus, errors in
simulated precipitation fields often indicate weaknesses in the representation of
these physical processes in the model.

Given this, it makes more pressing the issue to make better predictions of pre-
cipitation events and carefully analyze simulated precipitation fields for model
evaluation and development. It is of primary importance to investigate in de-
tail physical processes and more specifically convective ones and how they are
modeled, to unravel sources of uncertainties and understand how convection
is reproduced in models. Thus, the second aspect under focus in the thesis is
improving the understanding of the uncertainties behind convective processes
and precipitation. This is done, on one hand, by analyzing in detail convective
processes in an idealized setup, the Radiative Convective Equilibrium (RCE),
with the use of Cloud Resolving Models (CRMs) and, on the other hand, by
investigating the reliability and performance of GCMs for extreme convective
mesoscale systems in our region like the Mediterranean tropical-like cyclones
also called “medicanes” (Miglietta et al., 2013). Indeed, the use of models of
different levels of complexity, as suggested in the literature (Maher et al., 2019),
provides an understanding of the processes involved in modeling convection and
helps in making useful and valuable predictions.

13
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The study of convection at resolved scale is widely recognized as important,
specifically because CRMs, whose grid-spacing is fine enough, allow explicit
convection simulation (Guichard and Couvreux, 2017; Randall et al., 1996),
hence providing detailed process information about convection (Petch, 2006).
CRMs have been extensively used for simulating mesoscale convective systems
at mid-latitudes (Barthlott and Davolio, 2016; Ferretti et al., 2014; Miglietta
and Rotunno, 2019) and to study climate equilibrium and its instabilities (Muller
and Held, 2012; Emanuel et al., 2014; Yano and Plant, 2012). In this context,
the chosen approach is to run CRMs at RCE. Indeed, RCE, which is a statisti-
cal equilibrium between the atmosphere and surface, in the absence of lateral
energy transport, thus representing the tropical climate (Held et al., 1993), has
been widely applied for studying climate change (Wing et al., 2020) and con-
vection (Bretherton et al., 2005).

This framework is commonly used because the instability of the Earth’s climate
and the ability of climate models to simulate it may be connected to the in-
stability of RCE states (Raymond and Zeng, 2000), which are characterized
by deep convection and a balance between radiative cooling and convective
heating. Understanding the physics underlying RCE instability could be criti-
cal for accurately simulating a climate in which deep convection is prevalent,
as is the case in the current climate. Indeed, the observed convective orga-
nization (including squall lines, mesoscale convective systems (Emanuel et al.,
1994; Holton, 1973), the Madden–Julian oscillation (Grabowski and Moncrieff,
2004)) can also spontaneously appear in cloud-resolving models that are forced
homogeneously to RCE. This type of phenomenon in models is relevant to real-
world convection and climate (Holloway et al., 2017) and more specifically is
thought to be related to the formation of tropical cyclones (Muller and Romps,
2018).

Thus, the study of convection in idealized CRM simulation can give insight into
what feedback are more relevant to the formation of the convective organiza-
tion, using it as a proxy for the above-mentioned mesoscale convective systems.
This indeed represents the analysis carried out in the thesis. In particular, the
study of the organization of convection, by running CRMs to RCE, has under-
lined its role in cyclogenesis (Muller and Romps, 2018). Muller and Romps
(2018) identified the important role of radiative feedback in cyclogenesis, simi-
lar to what happens in idealized RCE simulations. This is particularly true for
tropical cyclones (Landsea and Cangialosi, 2018; Zhang et al., 2019b) and their
counterpart in the Mediterranean area, the medicanes. Indeed, medicanes are
a particular type of Mediterranean cyclone that, for a certain period of their
life, can exhibit tropical-like conditions. As a result, similar feedback mech-
anisms to those of tropical cyclones have been recognized to maintain them

14
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(Flaounas et al., 2022). It is precisely these feedback mechanisms that are gen-
erally present in RCE studies and are worth studying in idealized conditions as
they would be reproduced in CRMs.

However, in convective organization studies using RCE regarding cyclogenesis
(Muller and Romps, 2018), besides the similarities between the idealized condi-
tions and the real atmosphere, it is recognized that, in the latter, cyclogenesis
can be quite different and is influenced by large-scale environmental conditions.
Thus, if on one hand, the improvement in modeling convection and investi-
gating convective organization can be a tool to understand the processes and
feedback behind mesoscale convective systems such as cyclones, on the other
hand, the improvement of the formation and intensification predictions of these
latter is vital, especially regarding the effects of the large scale environment.

For this reason, the focus is also put on how the convective phenomena are
reproduced by models and what aspects of mesoscale convective systems are
more sensitive to the model simulation. This type of event is indeed repre-
sentative of deep moist convection within a strong vertical circulation. In this
context, tropical cyclones have been identified among the most impactful ex-
treme events, same as for the corresponding phenomenon in the Mediterranean
region, the medicanes. These phenomena have been chosen as they have an
important hydrological impact in our region, which is intensifying with global
warming (Trenberth et al., 2003). Thus, their prediction needs to be improved.

The use of GCMs ensemble forecasting is proposed. Indeed, in the literature,
the advantages of using ensemble forecasts instead of high-resolution deter-
ministic forecasts for studying this type of phenomenon have been recognized
(Magnusson et al., 2015; Buizza and Hollingsworth, 2002). In the case of the
Mediterranean cyclone, and in particular medicanes, there has been a long his-
tory of international coordination to improve the predictability (Flaounas et al.,
2022). There are inherent limits to the predictability of these cyclones, due to
the predictability of mid-latitude weather (Zhang et al., 2019a). More specifi-
cally, studies have shown that large-scale conditions often pose a challenge to
the predictability of Mediterranean cyclogenesis (Chaboureau et al., 2012; Port-
mann et al., 2020; Pantillon et al., 2013; Di Muzio et al., 2019). The limits of
predictability are also due to the multiscale nature of these cyclones, the contrast
in the density of observations between land and sea, and the diverse geography
of the region (Flaounas et al., 2022). Furthermore, the challenges that are faced
when dealing with cyclones intensification, regard the influence by (and the in-
teraction between) various processes that happen at different scales, including
small, convective-scale processes (Judt et al., 2016) and larger, synoptic-scale
environmental conditions. Improving the accuracy, reliability, and timeliness of
forecasts for these cyclones is a complex task that requires advances in both
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large and convective-scale initial condition uncertainty representations. This
implies once again the use of ensemble forecasting, as the chosen approach.

Furthermore, the interest behind the study of both the RCE at the tropics and
the tropical-like cyclones in the Mediterranean lies in the fact that both are
verified equilibrium states. RCE at the tropics is equilibrium over large space
and time scales between radiative cooling and radiative heating, and tropical
cyclones represent local equilibrium between the heating (coming mainly from
the latent heat of vaporization from the ocean’s surface, absorbed by the inward
airflow of the cyclone) and the turbulent dissipation in the storm’s atmospheric
boundary layer.

Improving understanding of climate feedback and convection and how they are
modeled on one hand, and improving forecasting of extreme convective events,
on the other, can eventually lead to better precipitation prediction. This, in
turn, will benefit the assessment of the changes in the hydrological cycle and
their effects, helping to reduce the uncertainty connected to the water cycle
variability and to hydrological modeling and thus can inform better climate
change mitigation measures.

1.1.Purpose of the study
The purpose of the study has been to investigate the hydrological cycle of the
atmosphere and its changes, specifically regarding mesoscale convective systems
at different spatial and temporal scales with a multi-modeling approach. More
specifically the goals of the work have been:

• Utilizing data from climate models in order to support the identification
of mitigation measures against the impact of climate change on water
resources, in particular lakes. This is done together with the combination
of observational data and GCMs output, reanalysis data, of the hydro-
logical cycle and its changes in the context of modeling the water mass
balance of inland water bodies;

• Examining convective organization, by using RCE simulations with differ-
ent convective permitting models, specifically investigating the different
roles of climate feedback (moisture feedback and radiative feedback) be-
hind the occurrence of the above-mentioned RCE instability, which is
crucial for convection in mesoscale convective systems, in order to find
common feature in models used in climate sensitivities studies;

• Investigating the simulation of Mediterranean cyclones, specifically “med-
icanes” and the effect of including the uncertainty on the physical pa-
rameters in addition to that of initial conditions, by means of ensemble
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forecasting. This is done in order to analyze the improvements or draw-
backs in precipitation, intensity, and cyclone tracking predictions for these
phenomena;

Indeed, the outcome of the global circulation at different space-time scales is
precipitation. This makes it important to look at different scales of precipitation
with a multi-modeling approach. Thus, in this research, the focus has been put
not on a single type of model, but both on CRMs, and GCMs in combination
with observational data and GCMs output. Indeed, one of the thesis assump-
tions is that the main way to study the hydrological cycle and its variability is
to combine observations with modeling.

1.2.Overview of the chapters
This research has been focused firstly on the combination of observational data
and GCMs output, reanalysis data, to be used in modeling the water mass
balance of one of the most important water resources of the central Italy re-
gion of Umbria, Trasimeno lake, to be used as a case study. Thus, the second
chapter of the research is concerned with water cycle budget modeling that has
been based on the combination of observational data of different kinds, mete-
orological observations (in our case from the Umbrian ground-based network),
observations from satellites, and climate data set (reanalysis) as observations.
Indeed, observations and reanalysis have been used as forcing for regional hydro-
logical simulations and water mass balance comparison. Specifically, the ERA5
Land reanalysis, the ECMWF reanalysis, has been used (Muñoz-Sabater et al.,
2021). Its importance not only lies in the fact that it represents the output of
a GCM and gives a global description of the climate in time, which is reflected
in local atmospheric conditions, but also because it is the first reanalysis that
includes the representation of lakes at the surface, with the model Fresh-water
Lake model (FLake) (Mironov, 2008). The combination of modeling and the
vast use of data turned out to be a suitable tool to study climate change in the
region, reflected in the variability of the water cycle.

It has to be noted here, that the research conducted in the second chapter
concerns the use of observations belonging to the Umbria region meteorological
ground-based network. The use of this data involved previous work that has
been carried out for their validation. Indeed the ground-based network provides
hourly measurements which are affected by different types of errors and present
missing data, and some work has been done to validate and reconstruct those
data (Bongioannini Cerlini et al., 2020) and to integrate all the observations
present in the territory in an Integrated Meteorological Network (Silvestri et al.,
2022b).

After becoming familiar with reanalyses and the underlying climate processes of
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climate change and the variation of the hydrologic cycle in the context of global
warming, the study proceeded to investigate the hydrological cycle with CRMs,
by modeling explicitly deep convection, making it possible to resolve sub-grid
deep convective processes. This is the content of the third chapter of the work.
This high-resolution modeling is very important since it is becoming possible
also for climate modeling to increase its resolution (Stevens et al., 2019).

It is noted here that, before using CRMs, the global water cycle and its equilib-
rium state, have been studied through the use of Single Column Models (SCM),
mimicking RCE equilibrium. SCM means simulating a single vertical column of
the GCM. It represents a grid point of the parent GCM which is evolving in time,
considered in isolation from the rest of the model. Indeed this part of the study
was thought of as a fundamental step in understanding idealized simulations
and initialization, models output managing as well as getting an understanding
of how the tropical circulation works and what type of equilibrium it can reach.
This work paved the path toward convective simulation with CRMs.

The study then proceeded with the simulation and comparison of two different
CRMs in their simulation of RCE, investigating the aggregation phenomenon.
The simulations were carried out with two different models for numerical inte-
gration and physics conception, in an attempt to try to isolate the processes
leading to aggregation that was common to the two models, considering, in-
stead of sensitivity experiments with the same model, the differences between
the two models. Indeed, in the light of the last Radiative Convective Equilibrium
Modeling Intercomparison Project (RCEMIP) project on the RCE simulations
of several different models under various initialization, it was seen the differ-
ence in the models’ numerics and physics plays the most important role (Wing
et al., 2020). The used models are the Advanced Regional Prediction System
(ARPS) model (Xue et al., 2000) built for the simulation of convective cells
and supercells and the System of Atmospheric Modeling (SAM) climate model
(Khairoutdinov and Kogan, 1999). The two models are both non-hydrostatic
and in both of them, convection is solved explicitly. They both present the con-
servation equations of mass, momentum, and energy, and both are constructed
with humid variables (water vapor content, cloud ice, cloud water, precipitating
water content, hail, and graupel) as prognostics. The simulations all start from
a tropical equilibrium profile condition (in temperature, humidity, and pressure)
and have been run until equilibrium was reached. The phenomenon of aggrega-
tion has then been assessed and its sensitivity to many models properties have
been studied.

Lastly, from the study of convective organization in three-dimensional models
run in RCE and the associated climate feedback, we moved to the study of
mesoscale convective systems, such as tropical cyclones, through ensembles,
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moving beyond RCE and considering the effect of rotation. Thus the fourth
chapter is concerned with going from modeling convection with high-resolution
3D models to global mesoscale models such as GCMs. In particular, atten-
tion has been focused on the Mediterranean region and medicanes, which are
tropical-like cyclone phenomena. The study investigated how ensembles, which
contain a measure of uncertainty in initial conditions and physical parameters
of convection, turbulence, radiation, and cloud process parameterizations, can
accurately predict the position and intensity of these phenomena. To do this,
a set of three experiments was used with the high-resolution (around 9 km)
Integrated Forecasting System (IFS) model of the ECMWF. The three exper-
iments compared an ensemble forecast with perturbation in initial conditions,
an ensemble forecast with perturbation in the physical parameters of the con-
vection parameterization (such as entrainment), and an ensemble forecast with
perturbation in the parameters of all relevant model parameterizations. The
technique used for physical perturbation is a relatively new technique called
Stochastically Perturbed Parameterizations (SPP), and it is not yet used oper-
ationally by ECMWF. For this reason, the study also looked at the differences
in performance between the use of SPP and the use of operational ensembles.
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2. Monitoring the water mass bal-
ance of small shallow lakes by
an ERA5-Land reanalysis and
water level measurement-based
model

This chapter1 regards the simulation of the lake water levels of small shallow
lakes where Precipitation and Evaporation are considered the main fluxes af-
fecting the lake water mass balance. The goal of the work is to provide a model
that can inform lake management and help understand the future changes in
the lake water balance, following its past. The approach used for the modeling
is based on the use of widely available sets of data: time series of precipitation
and evaporation and lake water levels measurements. The former is comprised
of global atmospheric data sets (reanalysis) and the latter is provided by re-
gional authorities on public websites. The tool developed using these data is an
alternative to parametric modeling of fluxes and to the use of various sources of
data (satellites, local weather stations, output of general circulation models) to
compose the lake water mass balance. The model is based on the use of ERA5

1This chapter is a slightly modified version of the paper: Cerlini PB, Saraceni M,
Silvestri L, Meniconi S, Brunone B., Monitoring the Water Mass Balance Variability
of Small Shallow Lakes by an ERA5-Land Reanalysis and Water Level Measurement-
Based Model. An Application to the Trasimeno Lake, Italy. Atmosphere, 2022. DOI:
https://doi.org/10.3390/atmos13060949.
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Land, the land component of the third-generation ERA5 reanalysis, provided
by the ECMWF. With respect to other available reanalyses, ERA5 Land has
been adopted because it is the only reanalysis including lake representation, by
means of the Fresh-water Lake model, FLake. In the proposed method, the
lake water levels are correlated with the water mass balance obtained by the re-
analysis. This is preceded by data validation by considering both ground-based
and satellite observations. The outcome of the modeling is analyzed by looking
at the models strength and flaws, reflecting climate extreme period effects on
the lake water resources. The chosen case study is the Trasimeno lake, a small
and shallow lake located in Central Italy. The results show that there is a good
agreement between the observed monthly variation of the lake level and the
corresponding values of the water storage. This promising result encourages
the use of ERA5-Land for other lakes.

2.1.Introduction
Climate change has a significant impact on lake water bodies worldwide (Wool-
way et al., 2020). At the same time, according to their size, lakes may behave
as sentinels or regulators of climate change (Williamson et al., 2009; Kirillin
et al., 2021). The impact of climate change has been recognized globally for
many aspects concerning lakes. The temperature has been increasing (O’Reilly
et al., 2015; Maberly et al., 2020; Rai et al., 2021) and ice phenology has
been changing, with ice cover loss (Sharma et al., 2019) due to earlier ice
breakup, later ice freeze-up, and shorter ice duration, at least in the northern
hemisphere (Magnuson et al., 2000). Evaporation of lakes has been changing
pattern, due to surface warming (Schneider and Hook, 2010), shortening of
the ice cover periods, and decreasing the ratio of sensible to latent heat flux
(Wang et al., 2018). Specifically in Europe, between 1966-2015, the average
lake surface temperature has been increasing by about 0.58 oC/decade (Dokulil
et al., 2021). Such a feature can change the lake mixing regime – both globally
(Woolway and Merchant, 2019) and regionally (Kirillin, 2010) – and accelerate
the evaporation process. Together with intense precipitation, evaporation af-
fects the lake’s water storage and then its level. Shifts in precipitation due to
evaporation cause changes in the water budget and residence time of lakes, as
well as in their depth and areal extent (Nowak and Lawniczak-Malińska, 2019;
Lei et al., 2019; Schulz et al., 2020; Wang et al., 2018). However, the sensitivity
of the water level to climate change and the extent of future variations remains
quite uncertain in quantitative terms (Woolway et al., 2020).

To improve the understanding of lakes’ response to climate change – in particu-
lar, the behavior in time of their level – in situ measurements should be coupled
to numerical modeling of the physical processes. In the literature (Kebede et al.,
2006; Gronewold et al., 2020; Vanderkelen et al., 2018), the shared approach
for evaluating the water level change, ∆H, in a given time interval, ∆t, is based
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on the water mass balance equation:

H(t)−H(t−∆t) = ∆H = P (t)− E(t) +R(t) (2.1)

where P = precipitation over the lake, E= evaporation from the lake, and the
term R comprises the surface water inflow that is not absorbed by the soil in
the neighboring area and then it passes into the lake; the groundwater flow,
and – where there is any – water from tributaries of the lake, such as rivers
or other connected lakes. According to the literature (Gronewold et al., 2020;
Cao et al., 2021), in this study, the water mass balance in Eq. (2.1) has been
evaluated on a monthly time scale (∆t = one month), that is appropriate from
the lake monitoring point of view.

Different approaches can be followed for evaluating quantities in Eq. (2.1). Pre-
cipitation over the lake is usually measured at the ground base (Kebede et al.,
2006) even if, recently, satellite observations are used as gridded data instead
of local scattered measurements (Lei et al., 2017; Smith and Gronewold, 2017;
Vanderkelen et al., 2018; Lu et al., 2018). Unlike precipitation, evaporation and
runoff are not usually measured at the ground base, but parametric formulas
are often utilized instead. These are based on ground-based measurements of
temperature, relative humidity, and wind.

For the evaporation, the most popular relationships are the Penman-Monteith
(Kebede et al., 2006; Chebud and Melesse, 2009; Dessie et al., 2015; Lükő
et al., 2022) and Thornthwaite (Dragoni et al., 2006) ones. Possible alterna-
tives for evaluating the evaporation are the use of the output of the numerical
weather prediction (NWP) models, run over the lake basin area (Vanderkelen
et al., 2018; Setegn et al., 2011), as well as the remotely sensed observations
(Lu et al., 2018; Smith and Gronewold, 2017).

For the runoff, the simplest method is to calibrate the runoff coefficient, which
depends on precipitation (Kebede et al., 2006; Dragoni et al., 2006; Vanderke-
len et al., 2018; Dessie et al., 2015), or to use satellite observations (Syed
et al., 2005). More complex parameterizations are those characterizing “ad
hoc” models as the Soil Water Assessment Tool (SWAT) (Cao et al., 2021),
and the Variable Infiltration Capacity (VIC) (Zhang et al., 2017; Tong et al.,
2020) ones.

In a different approach, the water mass balance is given by a general model,
instead of combining parametric formulas for the evaporation and runoff. As
examples, a Bayesian framework model and a harmonic regression model are
utilized in Gronewold et al. (2020) and Mahmood et al. (2020), respectively;
in both these models, satellite data are considered for estimating the quantities.
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The mentioned approaches have proven to be good candidates for modeling the
lake water mass balance. However, for two main reasons, it is not certain that a
methodology, refined for a given lake, will provide good results when applied to
other lakes around the globe. The first reason is that most of these recent stud-
ies are carried out on large lakes, for which a large amount of data is available,
with good spatial coverage – as, for example, Great Lakes (Gronewold et al.,
2020) and Victoria lake (Vanderkelen et al., 2018) – which allows representing
adequately all the fluxes involved in the water mass balance. The second reason
is that they use data and models that might not be readily available – as the
model ICON used for evaluating evaporation in (Vanderkelen et al., 2018) – or
open, as in the case of the harmonic regression model (Mahmood et al., 2020).
Moreover, with regard to observations, the mentioned techniques usually con-
sider satellite data that are not available for all the globe, or local ground-based
observations that are not provided by any regional meteorological or hydro-
graphic services. In conclusion, there is no comprehensive approach that can
be straightforwardly applicable to basins of different geographic/physical char-
acteristics.

For the above reasons, a different approach is proposed here, based on the use
of ERA5 - Land Reanalysis (ERA5L)– hereafter referred to as ERA5L (Muñoz-
Sabater et al., 2021) – the land component of the third generation ERA5 re-
analysis (Hersbach et al., 2020), provided by ECMWF, which is one of the most
well-established global atmospheric datasets. With respect to other available
reanalyses, ERA5L has been adopted not only because it covers the entire globe
and provides climate data that can reproduce physical processes, but also be-
cause it is the only reanalysis including lake representation, by means of the
Fresh-water Lake model - hereafter referred to as FLake (Mironov et al., 2010).
FLake predicts vertical temperature structure and mixing in lakes for time scales
from a few hours to years. In ERA5, lake temperatures are then used for evalu-
ating the interaction between the land and atmosphere, thus making the fluxes
over and from lakes’ surface more predictable (Balsamo, 2013).

In this study, ERA5L data have been used for evaluating the lake level evolu-
tion by means of Eq. (2.1). The analysis is focused on the Trasimeno lake, a
relatively small and shallow lake, in the Umbria region, Central Italy, for which
the water level measurements are available since 1991. Moreover, this study
aims at the performance evaluation of the reanalyses as a needed action prior
to their extensive use.

This chapter is structured as follows. A brief description of the Trasimeno lake
characteristics and previous studies is given in Section 2.2. The three different
sources of data used in this work (reanalysis, ground-based, and satellite) are
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Fig. 2.1: Map of the Trasimeno lake area and bathymetry with: ERA5L grid and points
(P1-Lake, P2-Tuoro, and P3-S.Savino, indicated by white circles); the Umbria region
weather stations measuring temperature and precipitation (Polvese, and Passignano
sul Trasimeno, indicated by black circles), and the lake level measurement station
(S.Savino, indicated by a red circle).

described in Section 2.3. The methodology adopted for data validation and
lake level modeling is described in Section 2.4. Results about data validation,
model calibration, and verification are presented in Section 3.4. The obtained
results are discussed in Section 3.5. Finally, the Conclusions are offered with
regard also to the use of the proposed model for other lakes in the world.

2.2.Site description and previous studies
The Trasimeno lake is located in the Umbria region, Central Italy (Figure 2.1).
The origin of the lake basin is linked to the tectonic phenomena concomitant
to the final phases of the Apennine orogeny. It is a relatively small and shallow
lake, with an average surface and depth of 122 km2 and 4.2 m (Figure 2.1),
respectively; accordingly, it is characterized by a large surface to volume ratio
(Vincent, 2009). Thus, Trasimeno lake is smaller than those addressed in the
literature, with an extent of the order of 103 km2 (Kebede et al., 2006; Lu et al.,
2018; Tong et al., 2020) or 104 km2 (Gronewold et al., 2020). For the reasons
discussed above, about the possible use of models calibrated for larger lakes,
this makes the Trasimeno lake case study of particular interest for evaluating
the performance of the proposed approach.
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The Trasimeno lake plays a very important role from the economic point of
view, i.e. for tourism and agriculture, since it is the major water resource in the
surrounding region. Due to its role in terms of water supply, its level is influ-
enced also by human management, such as the irrigation withdrawals by means
of the artificial outlet, built in the XIX century. However, the major influence on
the lake level is represented by climatic factors, such as basin precipitation and
evaporation (Dragoni et al., 2012; Ludovisi and Gaino, 2010). On the contrary,
due to the region’s climate, the ice plays no role.

The catchment area of the Trasimeno lake is approximately equal to the hydro-
geological basin (Dragoni et al., 2006) and it has no natural emissaries. By
looking at the CORINE (Coordination of Information on the Environment) Land
Cover database – provided by the European Copernicus project land monitoring
services – the area around the lake consists mainly of some forests and arable
areas with a few small regions covered with vineyards and olive groves. It is
known that water from the lake is extracted both for on-site cultivation as well
as cultivation in the areas surrounding the lake outside the catchment area.
This is assumed to be particularly true in the summer months, even though
there are no data available to confirm this hypothesis.

For all the above reasons, particularly the small depth, the level of the Trasimeno
lake is highly variable and then particularly sensitive to climate change. Pre-
cisely, it is especially vulnerable to changes in the precipitation-to-evaporation
ratio. Accordingly, it represents a very challenging water body for modeling
water mass balance and could be a representative case study for many other
lakes of similar size around the globe. These are many more in number than
the large ones and much less studied, but they may have a significant impact
on the global climate and human activities (Downing, 2010).

Throughout the years, some parametric models have been proposed for evaluat-
ing the Trasimeno lake water mass balance: the LAGO (Dragoni et al., 2006),
the SimbaT (Casadei et al., 2016), and the HLM (Ubertini et al., 2007). These
models are very similar since they all consider the same physical processes for
the lake water mass balance and similar parameterizations. LAGO simulates
the mass balance by considering the inflow-outflow processes in the lake and
its catchment area. The lake basin is divided into two reservoirs representing
the lake and the catchment area and aquifer, put in communication, respec-
tively. On the contrary, SimBaT and HLM consider a unique reservoir and
are based on a single water mass balance (flows-outflows) equation. In these
models, the precipitation over the lake area is divided between the one falling
over the lake and the one over the catchment (LAGO) or by multiplying the
total precipitation to their respective areas (SimBaT and HLM). They also take
into account the values observed by the local ground-based weather stations.
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Evaporation instead is estimated by the Thornthwaite formula (Thornthwaite
and Mather, 1957), based on the measured ground-based temperature. The
runoff – evaluated simply by multiplying the precipitation over the catchment
area by a calibrated runoff coefficient (SimBaT and HLM) or by the paramet-
ric formula of Vandewiele (Vandewiele et al., 1992) (LAGO) – is shown to
be negligible compared to evaporation and precipitation on a yearly average
(Dragoni et al., 2012). However, this may not hold in the case of extreme pre-
cipitation events, in which surface runoff and higher-than-normal groundwater
levels due to floods may contribute significantly to the lake water mass balance.

The above-mentioned models, based on parametric formulas and with no spe-
cific data validation procedure, require long periods of time for calibrating the
coefficients. For example, LAGO was calibrated from 2006 until 1984 (i.e., for
more than twenty years) and then used to simulate the lake level backward to
1966 whereas the SimBaT model was calibrated from 1963 to 1999 (i.e., for
more than thirty years) and validated from 1999 to 2010. However, these sim-
ulations fail to represent the water balance in climatically anomalous periods;
for SimBaT, as an example, the drought period around 2003 (Casadei et al.,
2016).
The approach proposed in this study, based on data from reanalysis (ERA5L),
aims at providing an alternative to the use of the parametric models.

2.3.Data sources: Reanalysis and Observations
In this study, three different sources of data have been used for modeling the
lake water mass balance: the ERA5 Land (ERA5L) reanalysis data of lake tem-
perature, precipitation, and evaporation; the ground-based observations of lake
level, precipitation, and wind; the satellite-based observations of lake surface
water temperature. Each source is detailed in the following subsections. For
the analysis, all data have been grouped monthly, by averaging for temperature,
wind, and lake level and accumulating for precipitation and evaporation.

2.3.1.ERA5L reanalysis and the FLake model
IFS and ERA5L

The Integrated Forecast System (IFS) is a GCM provided by ECMWF, used
for numerical weather predictions. The latest version of IFS (CY45R1) includes
several components which interact together: the atmospheric model, the land-
surface model, the ocean model, the ocean wave model, and the data assimila-
tion of the initial conditions for the IFS system. The latter, which is a complex
procedure, called 4D Var (4 Dimensional Variational assimilation), is run to pro-
vide consistency with observations. Indeed, the 4D Var is a data assimilation
method of estimating the set of unknown parameters contained in the model
by optimizing the fit between the solution of the model and a set of observa-
tions that the model is meant to predict, reducing the difference between the
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initial conditions and the observations. The procedure of adjusting the param-
eters until the model ’best predicts’ the observables, is known as optimization
and it is run over a twelve-hour assimilation window. The ”four-dimensional”
nature of 4D-Var reflects the fact that the observation set spans not only three-
dimensional space but also a time domain (Rabier et al., 2000). Given that,
in the IFS, the water cycle is consistent with observations and physical fluxes,
given the consistency and interaction between all the above-cited model com-
ponents and the 4D Var process. In particular, the atmospheric model interacts
with the land-surface model H-TESSEL through surface fluxes and all the me-
teoric species (Balsamo et al., 2009). The same complex system produces the
ERA5 reanalysis (Hersbach et al., 2020), at a horizontal resolution of 0.25°
(≃ 31 km) from 1950 to nowadays, where the data assimilation is run contin-
uously with past observations instead of only using a short assimilation-window.

The land-surface component of the ERA5 reanalysis is ERA5L (Muñoz-Sabater
et al., 2021). It is produced hourly using H-TESSEL, run at a higher horizontal
resolution (= 0.1°≃ 11 km), driven by the downscaled meteorological forcing,
via a linear interpolation from ERA5, including an elevation correction for the
thermodynamic near-surface state.

Within each grid point of the IFS model, H-TESSEL consists of several tiles/fractions,
each representing a different ground interface: one bare soil fraction, two vege-
tated fractions (high and low vegetation without snow), three snow/ice fractions
(snow on bare ground/low vegetation, high vegetation with snow beneath, and
lake-ice), and two water fractions (including interception reservoir and ocean).
Since 2015, the specific Freshwater Lake model (FLake) – described in the next
subsection – has been added to H-TESSEL to represent lakes and their interface
with the atmosphere (Mironov et al., 2010).

The effectiveness of using ERA5L data derives from taking under consideration
time series of points which, unlike observations, are not local data, but are
spatially consistent, since they are the result of a large-scale climate model.
Specifically for the Trasimeno lake area, the considered ERA5L points are ho-
mogeneous in the type of terrain.

FLake model and ERA5L fluxes
FLake is a one-dimensional model which represents fresh-water lakes (Thiery
et al., 2014; Shevnina and Kourzeneva, 2017; Betts et al., 2020), by parame-
terizing them as basins of fixed depth divided into a surface mixed layer, which
is directly in contact with the atmosphere, and a deep layer, at the bottom.
By means of the heat balance, it computes the behavior over time of the tem-
perature of the two layers: the surface mixed layer temperature, TML, and the
bottom layer temperature, TBL. In such a context, the shortwave radiation
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reaching the surface – including both the absorbed and reflected one –, the
latent heat, the sensible heat, and the long-wave radiation flux from the lake
surface are taken into account. FLake provides the seasonal evolution of the
lake temperature to IFS to improve the calculation of the fluxes to and out
of the surface, including evaporation and precipitation (Balsamo, 2013; Man-
rique Suñén et al., 2012; Samuelsson et al., 2010).

The decision to use ERA5L is based on the fact that FLake, integrated with
H-TESSEL, provides evaporation data from the lake since it models the lake
layer temperatures. Such data are not available for the other reanalyses. Fur-
thermore, ERA5L provides precipitation data which are calculated in interaction
with the presence of the lake on the underlying surface. For a more detailed
explanation of FLake, given the brief description in Appendix A, the reader can
refer to the IFS documentation (ECMWF, 2018) and the theory in Mironov
(2008) and Mironov et al. (2010).

FLake takes into account all inland water bodies occupying at least 1% surface
area of each model grid box. For the ERA5L grid points in the Trasimeno lake
area, the lake cover fraction is around 0.1. The lake depth – specified according
to the bathymetry (Balsamo et al., 2012) – is assumed as equal to 4 m.

As mentioned above, FLake provides the lake temperature – specifically TML –
to the land surface model for evaluating the mean skin temperature of the lake
tile, Tsk, and then the evaporation from the lake. Surface heat, momentum, and
water fluxes are calculated by H-TESSEL for each tile based on their resistance,
humidity, and temperature properties. For what concerns the evaporation, in
IFS a bulk aerodynamic formula is applied to calculate the turbulent flux of
water vapor, E. Specifically, for each water tile, i, and grid point, j, it is:

Ei,j = ρa|UL,j |CH,i,j [qL,j − qsat,j(Tsk,i,j)] (2.2)

with ρa (kgm−3) = air density; UL (ms−1) and qL (g/kg) being the wind
speed and humidity of the nearest to the surface atmospheric model level, re-
spectively; qsat (g/kg) = saturation specific humidity; and CH,i = turbulent
exchange coefficient. Such a coefficient, which represents the surface resistance,
is computed considering different roughness lengths for heat and momentum by
the Monin–Obukhov formulation (see technical support from ECMWF (2018)
for a detailed description). For each water tile, qsat is calculated using the mean
skin temperature of the tile, Tsk,i(

◦C).

The atmospheric component of IFS provides the precipitation, that interacts
with the land surface model, as the result of multiple processes in the atmo-
sphere. Accordingly, it comprises both convective and large-scale rainfall. The
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former is generated by convection (when atmospheric air at low levels is warmer
and less dense than the air above, so it rises), whereas the latter is by large-
scale weather patterns (i.e., fronts). Large-scale and convective precipitation
are calculated in two different schemes within the IFS model, the cloud and
convective schemes. The moist convection scheme (Chapter 6 of (IFS Docu-
mentation CY47R3, 2021a)) is based on the mass-flux approach and represents
deep, shallow, and mid-level convection. The convection scheme represents
convection at spatial scales smaller than the grid box and generates precipita-
tion based on the amount of downdraught and updraught mass fluxes and the
change that they make to the moisture, heat, and momentum budgets.

The cloud scheme (Chapter 7 of (IFS Documentation CY47R3, 2021a)) param-
eterizes clouds and large-scale precipitation with prognostic equations for cloud
liquid, cloud ice, rain, and snow water contents and a sub-grid fractional cloud
cover. The cloud schemes represent the sources and sinks of clouds and precip-
itation due to the major generation and destruction processes. These include
condensation, deposition, evaporation, collection, melting, freezing, cloud for-
mation by detrainment from cumulus convection (Tiedtke, 1993; Forbes et al.,
2011), conversion from cloud water into the rain, detrainment from mass up-
draft, and evaporation from precipitation (Tiedtke, 1989; Bechtold et al., 2014).
All these processes are integrated over the atmosphere column at each grid
point, j, to get the precipitation over the lake, P , as:

Pj =

∫ ptop

p0

(Gj −Dj)
dp

g
(2.3)

where p = column pressure (hPa) with the subscripts 0 and top indicating the
surface and top of atmosphere, respectively, g = acceleration of gravity (=
9.8 m/s2), and Gj and Dj represent all the precipitation sources and sinks,
respectively.

Selected ERA5L data
Accordingly to ERA5L horizontal resolution, in the area surrounding the lake,
three grid points have been considered (indicated by white circles in Figure 2.1):
the two closest to the Trasimeno lake (i.e., P2-Tuoro and P3-S.Savino), and the
one located in the lake (P1-Lake). P1-Lake has the largest lake cover fraction
(= 0.1), followed by P2-Tuoro (= 0.08), and P3-S.Savino (= 0.05).

2.3.2.Ground-based data
The region around the lake is monitored by three weather stations managed by
the Umbria regional hydrographic service (indicated by black circles in Fig-
ure 2.1): Polvese, Passignano sul Trasimeno, and S. Savino. Polvese and
Passignano sul Trasimeno weather stations have been measuring temperature,
precipitation, and wind since 2002 and 1992, respectively. The S.Savino station
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measured precipitation from 1996 to 2019 and the lake level since 1991, with
only two data missing periods (i.e., between 2012 and 2013) due to mainte-
nance failure of the weather station hydrometer. The lake level is measured
hourly by the ultrasonic hydrometer CAE ULM20. However, only the daily
mean values are provided by the Umbria regional hydrographic service. The
instrument resolution, sensitivity, and accuracy are 1 cm, 0.1 cm, and ± 1 cm
(over the whole measurement range), respectively.

The time series of the daily mean level are shown in Figure 2.2 where the val-
ues are referred to the hydrometric zero value (= 257.1 m a.s.l.) that has been
reached only in the early nineties and exceeded only from 2014 to 2017.

Before using lake level data, they have been checked for internal consistency
on the basis of the precipitation measured at the same weather station (Bon-
gioannini Cerlini et al., 2020; Silvestri et al., 2022b). Precisely, the lake level
data have been considered invalid (thus creating a masked value) if on the same
day, it rained and the lake level remained unchanged and vice-versa. This level

Fig. 2.2: Values of the daily mean level, H, of the Trasimeno lake, measured at the
S.Savino weather station, within blue the hydrometric zero.

check was dictated by the fact that precipitation is the flux that contributes the
most to the variation of the lake level. The threshold of minimum precipitation
to change the lake level was set to 1.5 mm, taken as the difference between
mean precipitation and evaporation over the period. Choosing the difference
between daily precipitation and evaporation as the threshold is dictated by the
assumption that the minimum change to the lake level is the amount of water
that precipitates on the lake net of that which evaporates on a daily basis.
Since no ground-based evaporation measurements are available, to choose the
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threshold value, the climatological values from 1950 to 2019, given by the Ital-
ian Institute for Environmental Protection and Research (ISPRA) (Braca et al.,
2021), have been considered. ISPRA reported that in Umbria, the daily mean
rainfall value during the period 1996-2019 is 2.5 mm/day, and the daily mean
value for evaporation is 1 mm/day, thus giving a threshold value of 1.5 mm/day.

On the basis of data from the closest weather stations to the S.Savino hy-
drometer (i.e., Polvese and Passignano sul Trasimeno), the daily mean wind
speed on the Trasimeno lake is 2.9 m/s and the predominant wind direction is
from the south (Figure 2.3). The wind set-up, evaluated by considering such
average wind speed and direction in the formula proposed in (Colvin et al.,
2018), amounts to approximately 1.9 cm. Such a value is comparable to the
instrument resolution and accuracy and therefore its effect has been neglected.
In the future, for a further and more detailed analysis, a second hydrometer
should be located on the opposite side of the lake.

Fig. 2.3: Ten meters wind rose at the two different weather stations in the lake area
(black circles in Figure 1): a) Passignano sul Trasimeno; b) Polvese. Radial distance
and shading indicate the percentage of days with wind direction in the sector and wind
speed intervals, respectively.

The validation check has been specifically applied to periods where the lake
level is erroneously fluctuating between two values but it was not raining, as
for example, around March 2002 (Figure 2.4). However, quite long periods
of persistence of the lake level are probably due to the fact that indeed some
weak rainfalls do not change the lake level significantly. This control, although
elementary, provides a way of eliminating invalid data, which have been then
disregarded in the following analysis. The final result, i.e. the validated data
series of the lake level, is shown in Figure 2.4b for the period January 2002 -
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January 2003, as an example.

Fig. 2.4: Cross-check between precipitation and level of the Trasimeno lake at S.Savino
for the period January 2002 - January 2003. In Figure 3a, the unchecked lake level is
reported together with precipitation, whereas in Figure 3b the validated level is shown.

2.3.3.Satellite data
Due to the lack of ground-based evaporation observations, the ERA5L lake sur-
face mixed layer temperature, TML, that is modeled prognostically by FLake,
has been compared to the satellite observed Lake Surface Water Temperature
(LSWT, ◦C) provided by the Natural Environment Research Council (NERC)
project Global Observatory of Lake Responses to Environmental Change (Globo-
Lakes) (Carrea and Merchant, 2019). This is because TML is the FLake pa-
rameter related to the atmosphere in the evaluation of the evaporation from
the lake and it is assumed to correspond to the lake surface temperature ob-
servations.

The LSWT values are obtained by combining orbit data from different sources
of multipurpose imaging radiometers. These are the AVHRR (Advanced Very
High-Resolution Radiometer) in MetOpA, AATSR (Advanced Along Track Scan-
ning Radiometer) in Envisat, and ATSR-2 (Along Track Scanning Radiometer)

32



Chapter 2. Lake water mass balance modeling

in ERS-2 (European Remote Sensing Satellite). From 1995 to 2016, for all
the lakes of the globe, these data are distributed on a grid with a horizontal
resolution of 0.05° (≃ 5 km).

The GloboLakes dataset (v4.0) consists of the LSWT daily observations, with
their uncertainty and quality levels. The uncertainty comprises an evaluation of
the total uncertainty in the LSWT retrieval process. The quality level, an index
ranging from 2 (suspect/marginal quality) to 5 (best quality), is a measure of
the quality with which the retrieval process is executed. In this study, only
LSWT values with high-quality levels (i.e., 4 or 5) have been considered.

2.4.Methods
2.4.1.ERA5L data validation

Before using for modeling the water mass balance, ERA5L data have been vali-
dated against observations for what concerns precipitation and evaporation, the
most influential fluxes in the water mass balance.
The comparison between reanalysis TML and satellite LSWT has been carried
out for the period 1995-2016 for each of the three ERA5L grid points and their
weighted average (by lake cover fraction).

The monthly ERA5L precipitation data for each of the selected ERA5L grid
points have been compared to the precipitation provided by the ground-based
weather network stations (Figure 2.1). The nearest to the ERA5L point weather
stations have been chosen. Precisely, the ERA5L P1-Lake precipitation has been
compared to the Polvese one since 2002; the ERA5L P2-Tuoro to the Passig-
nano sul Trasimeno one since 1996; and the ERA5L P3-S.Savino to the S.Savino
one since 1996.

The correspondence between reanalysis and observations has been measured
by the Pearson correlation coefficient, r2, and the Root Mean Square Error,
RMSE, defined as:

RMSE =

√√√√ 1

N

N∑
i

(mi − oi)2 (2.4)

where mi are the modeled values from reanalysis, oi are the observations, and
N is the number of the values sample.

2.4.2.Modeling the lake level: the conceptual model
As mentioned, for the Trasimeno lake it has been shown (Ludovisi and Gaino,
2010; Dragoni et al., 2012) that, monthly, the groundwater and surface runoff
can be neglected given that, on average, the catchment area is approximately
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equal to the hydro-geological basin. Accordingly in Eq. (2.1), it is assumed
R(t) = 0 and then it can be rewritten as:

∆H ≃ P (t)− E(t) = δ(t) (2.5)

where ∆H = monthly variation of the lake level, and δ = P-E is the water
storage. In other words, in this model, the basic assumption is that the precip-
itation and evaporation are the fluxes that mostly influence the water balance
of a closed lake, like the Trasimeno one. This assumption has been verified by
checking that the monthly mean runoff flux (surface and subsurface runoff),
provided by the reanalysis, was of an order of magnitude smaller than the pre-
cipitation and evaporation fluxes (not shown). However, as already pointed out,
this assumption might not hold either for other shallow lakes or under extreme
hydrologic conditions during a period of heavy rainfall, when also inflow from
groundwater does occur.

Indeed, on one hand, the groundwater inflow from the aquifer is often negli-
gible on an annual and monthly basis, as shown for other shallow lakes in the
literature (Klimaszyk et al., 2015), but it may be important in wet years, dur-
ing extreme precipitation events, when it recharges the lake (Klimaszyk et al.,
2015). On the other hand, some shallow lakes are highly influenced by surface
runoff from rivers, which significantly influences the lake’s water balance (Cao
et al., 2021; Klimaszyk et al., 2015), becoming more important under condi-
tions of extreme precipitation (Yihdego et al., 2017). However, surface runoff
input in shallow lakes, as in the case of Trasimeno lake, is an order of magnitude
smaller than the actual runoff from rivers or tributaries (Kebede et al., 2006).

The monthly time series of δ have been computed for each of the three ERA5L
grid points and for their weighted average, by considering their respective lake
cover fraction. Successively, such time-series of δ have been compared to the
observed ∆H one to check for the model validity.
The performance of the proposed model has been evaluated on the basis of the
RMSE, as defined by Eq. (2.4), and the Kling–Gupta efficiency, KGES , defined
as in Gupta et al. (2009):

KGES = 1−
√

(rS − 1)2 + (
σm
σo

− 1)2 + (
σm
σo

− 1)2 (2.6)

where rS is the linear correlation between observations and simulations; σm
σo

and
σm
σo

are a measure of the error and bias, respectively, with σm and σo being the
standard deviation in simulation and observations, respectively, and µm and µo

are the simulation and observation mean, respectively. Values of KGES equal to
1 indicate a perfect agreement between simulations and observations, whereas
negative KGES values imply a disagreement between them.
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2.5.Results
2.5.1.Lake temperature and precipitation validated data

An example of the comparison made between LSWT data from satellite and
TML from reanalysis is reported in Figure 2.5 for the period from 2008 to 2011.
From such a comparison it emerges that on the whole, the LSWT trend is in
good agreement with the one of the temperatures given in ERA5L.

Fig. 2.5: Comparison for the period 2008-2011 between the lake surface water temper-
ature, LSWT (◦C) from satellite (reported in black), and the mixed layer temperature,
TML(

◦C), as modeled by ERA5L (in blue), for each ERA5L point and their weighted
average.

The best correspondence concerns the ERA5L P1-Lake data, i.e. at the grid
point located in the lake, which falls within the LSWT associated uncertainty.
This is underlined in Table 2.1 by the values of the Pearson correlation, r2T ,
and Root Mean Square Error, RMSET , where the subscript T indicates the
temperature.

Table 2.1: Pearson correlation coefficient, r2T , and RMSET for the lake temperature
in the period 1995-2016.

P1-Lake P2-Tuoro P3-S.Savino 3 Points Mean

r2T 0.99 0.99 0.99 0.99

RMSET (°C) 1.1 2.6 2.6 2.0

While the correlation is close to unity, the RMSET values indicate that the
ERA5L temperatures are on average 2.6 °C different from those observed in the
P2-Tuoro and P3-S.Savino grid points. The closest series of TML from ERA5L
to the observed one is that from P1-Lake, which deviates by 1.1 °C. This is
possibly due to the fact that point P1-Lake is located at the lake and then it
has a lake fractional cover larger than the other two points.

The comparison between monthly ERA5L precipitation data and rain gauge
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observations is shown in Figure 2.6, where only the period from 2008 to 2011
is reported as an example.

Fig. 2.6: Comparison for the period 2008-2011 between the precipitation over the
lake, P (m/month), observed at ground base by weather stations (reported in red),
and the one, provided by ERA5L (in black), at: a) P1-Lake vs. Polvese, b) P2-Tuoro
vs. Passignano sul Trasimeno, and c) P3-S.Savino vs. S.Savino.

From such a comparison it can be noted that on the whole the precipitation
trends of ERA5L and the observed one are in good agreement. In fact, even
if discrepancies occur in some months, the monthly precipitation pattern is
captured reasonably well by ERA5L. Indeed, for all grid points the correlation
is above 0.70 (Table 2.2), with the largest value reached at P2-Tuoro (r2P =
0.80, where the subscript P indicates precipitation).

Table 2.2: Pearson correlation coefficient,r2P , and RMSEP for the precipitation over
the lake in the period 1995-2016.

P1-Lake P2-Tuoro P3-S.Savino

r2P 0.70 0.80 0.75

RMSEP (m/month) 0.04 0.03 0.04

When the RMSEP values are considered, the difference in precipitation is quite
small in the three grid points. In fact, it is about 0.04 m/month for P1-Lake
and P3-S.Savino, while it decreases slightly for P2-Tuoro (0.03 m/month). This
analysis suggests that the precipitation range of ERA5L is in good agreement
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with the values measured on the ground.
Since the ERA5L validation process has given satisfactory results, given the
value of the Pearson correlation (r2P ≥ 70% and r2T ≥ 70% as in (Sun et al.,
2021a; Jiao et al., 2021)), this lays the basis for reliable use of evaporation and
precipitation fluxes from ERA5L.

2.5.2.Modeling the lake level: correlation analysis
The validity of the model proposed in Eq. (2.5) has been checked by comparing
the time series of the modeled δ with the observed ∆H, as described in Section
2.4.2. From the comparison shown in Figure 2.7, it can be seen that for the
considered period there is a good correspondence in the trend. However, at the
higher values, the scattering increases, thus implying a worse correspondence
between δ and ∆H. This is probably because the runoff has been neglected.
Indeed, these higher levels correspond to periods in which the lake level has
risen due to intense rainfall. This feature probably contributed to the increase
of surface runoff and groundwater level and, consequently, of the groundwater
inflow into the lake.

To assess whether the linear relationship between ∆H and δ is valid, the Pear-
son correlation coefficient, r2δ , has been evaluated, by assuming both δ and
∆H normally distributed (Figure 2.7 and Table 2.3). The correlation analysis
reveals that r2δ is always larger than 70 % and it reaches its maximum value (=
81%) at the grid point P1-Lake (Figure 2.7a).

Table 2.3: Pearson correlation coefficient, r2δ , between ∆H and δ in the period 1996-
2019.

P1-Lake P2-Tuoro P3-S.Savino 3 Points Mean

r2δ 0.81 0.79 0.70 0.79

Although the δ series are very similar to each other – as expected since the
considered grid points are located in a limited area – as for temperature and
precipitation, the strongest correlation is definitely for the grid point P1-Lake,
located in the Trasimeno lake (Figure 2.1).

The slightly better performance of point P1-Lake can be ascribed to the larger
values of evaporation from the lake accounted for by ERA5L (not shown).
In fact, in the case of P1-Lake, the evaporation from the lake accounts for
60% of the total evaporation, while in the other points, this percentage is
smaller (45% for P2-Tuoro and 20% for P3-S.Savino). Thus, this might have
positively impacted the correlation between the P1-Lake time-series, δ, and the
observed, ∆H, especially in the summer season when evaporation is prominent
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Fig. 2.7: Correlation analysis between the monthly variations of the lake level, ∆H,
and water storage, δ, for the three ERA5L points closest to the lake: a) P1-Lake, b)
P2-Tuoro, c) P3-S.Savino, and d) their weighted average.

in modifying the lake level. Accordingly, in the successive phase of the model
calibration, it has been decided to focus the attention only on the ERA5L P1-
Lake grid point. As a result of the above correlation analysis, the simplified
model of Eq. (2.5) has been deemed valid for simulating the variations of the
lake level, ∆H.

2.5.3.Model calibration and verification
According to Figure 2.7, a linear relationship between δ, given by ERA5L P1-
Lake, and the observed ∆H has been assumed:

∆H(t) = αδ(t) + β (2.7)

where the value of the coefficients α (= 1.33) and β (=-0.04) has been cali-
brated (with r2δ = 0.85) by considering only the values of ∆H in the initial five
years (i.e., from 1996 to 2000, included) at the S.Savino station. The successive
period 2001-2019 has then been used for model validation.
In Figure 2.8, the values of the monthly lake level, given by Eq. (2.7), are
compared to the observed ones. The simulated values are in good agreement
with the observed ones and allow capturing the annual trend of the observed
lake level.

The values reported in Table 2.4 indicate that, apart from the validation pe-
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Fig. 2.8: Monthly lake level, H, simulated (in black) by Eq. (2.7) vs. observed (in
red) values at S.Savino. In the model, the validation period is from 1996 to 2000,
whereas the simulation one is from 2000 to 2019.

riod, where the simulation overlaps the observation, the periods that are better
stimulated by the linear model are those from 2006 to 2012 and 2017 to 2019
when small RMSES and the closest to one KGES values occur (the subscript S
indicates simulations).

Table 2.4: Performance of the model simulating the monthly lake level, H: Root
Mean Square Error, RMSES , and Kling–Gupta efficiency, KGES , in different periods.

Period RMSES (m) KGES

1996-2019 0.31 0.56
2002-2005 0.30 0.55
2006-2012 0.17 0.79
2013-2016 0.57 -2.1
2017-2019 0.18 0.65

Indeed, in these two periods, RMSES is actually smaller (Table 2.4) than the
value computed for the total simulation period 1996-2019, and the KGES is
larger, reaching 0.79 for 2006-2012. On the contrary, in the periods 2002-2005
and 2013-2016, there is a disagreement between the simulated values and ob-
servations. Precisely, the former is larger (smaller) than the observations in
2002-2005 (2013-2016). In the first case, RMSES is 0.30 m while in the second
case, it reaches 0.57 m, values that reflect the discrepancy between simulation
and observation. Such a feature is also confirmed by the values of KGES which,
in the period 2002-2005, is smaller than in the other ones. The negative value
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in 2013-2016, makes this period the worst simulated one by the model.

An aspect that might have had an impact on the discrepancy at higher water
level variation, for example in 2013-2016, is related to the assumed relation-
ship between the water balance and the lake level, which might not be linear.
Indeed, the lake surface area increases disproportionally at higher water levels
(Figure 2.7), so the increase in water level per increase in water storage dimin-
ishes, implying a parabolic relationship between the lake level and the surface
area, as reported in the literature (Muala et al., 2014; Li et al., 2019). How-
ever, this aspect has been neglected since the quadratic interpolation of the
data points gives almost equal results in terms of the Pearson correlation (not
shown). Moreover, the contribution of groundwater inflow was probably pre-
vailing in this period.

As pointed out above, this misrepresentation, especially for the period 2013-
2016, could also be related to the fact that the runoff has been neglected. In
fact, runoff, in the form of groundwater inflow, could be quite influential in an
extremely wet period. Unlikely, the lack of a piezometric network in the lake
area does not allow getting at a certain determination about the role of the
groundwater inflow.

2.6.Discussion
Figure 2.8 plots indicate that the proposed model is able to reproduce the trend
of the observed lake level, managing to simulate adequately the dynamics of
the water balance of the Trasimeno lake. However, as mentioned, the model
(almost) consistently underestimates the water level and there are few specific
periods where the simulation fails to capture the observed values. The first one
is from 2002 to 2005, and the second one is from 2013 to 2016.

The first period was a drought period: at the end of 2003, the lake level reached
-1.9 m, i.e., the minimum value in 1996-2019. It is worth noting that 2003 is
the year when Europe experienced a particularly extreme climate anomaly with
July temperatures anomaly reaching 6◦ (Beniston, 2004; Black et al., 2004).
In this period, the model returns values of δ that are much higher than the
observations (RMSES = 0.30 m in Table 2.4). The second period, late 2012-
early 2013, with the poorest agreement (RMSES = 0.57 m in Table 2.4), is
characterized by intense precipitation over central Italy (Ferretti et al., 2014)
and, then, also over the Trasimeno lake area.

To understand the reasons of these discrepancies, the monthly precipitation
of ERA5L has been compared with the ground-based observations. This is be-
cause, although the ERA5L precipitation data have been validated on the whole
against observations, there may be errors during periods of climate extremes.
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With this aim, the weather station of Polvese (in operation since 2003) has
been considered, as it is the closest to the ERA5L point P1-Lake (Figure 2.1).
The results of such an analysis are shown in Figures 2.9 and 2.10 for the period
2002-2005 and 2012-2013, respectively.

Fig. 2.9: Comparison between ERA5L and ground-based observed data for the drought
period 2002-2006: a) monthly lake level, H, from ERA5L P1-Lake (in black) and the
observed one at S. Savino station (in red); b) precipitation over the lake (m/month),
P , from ERA5L P1-Lake (in black) and the observed one at Polvese station (in red).

The drought period is not properly captured by reanalysis precipitation data
(Figure 2.9). Indeed, since April 2003, the comparison between the precipi-
tation given by ERA5L at P1-Lake and the one observed at Polvese, points
out that the former is much larger (0.10 m/month vs. 0.05 m/month). This
feature persists throughout most of 2004 and 2005. At the beginning of 2003,
precipitation data were not available for the Polvese station. However, for the
other stations of S.Savino and Passignano sul Trasimeno, both in the lake area
(Figure 2.1), an overestimation of the precipitation by ERA5L has been noticed
(not shown).

Therefore, a similar overestimation can be assumed also for the Polvese station.
Such discrepancies between simulated and observed data in drought periods
could also be due to possible errors in the evaporation data, which cannot be
directly checked as there are no evaporation measurements. However, the check
of LSWT vs. the temperature from ERA5L indicates an RMSET of about 1
degree, which could have influenced a difference in the evaporation. Moreover,
another element of misrepresentation in this drought period might come from a
non-negligible groundwater outflow from the lake, which supplies the aquifer in
drought periods, as documented for other shallow lakes (Klimaszyk et al., 2015).
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Fig. 2.10: Comparison between ERA5L and ground-based observed data for the intense
precipitation period 2012-2013: a) monthly lake level, H, from ERA5L P1-Lake (in
black) and the observed one at S. Savino station (in red); b) precipitation over the
lake (m/month), P , from ERA5L P1-Lake (in black) and the observed one at Polvese
station (in red).

For the intense precipitation period, the focus has been put on late 2012 and
early 2013. In fact, in December 2012 (Figure 2.10), a monthly peak of precip-
itation equal to 0.30 m has been reached at the Polvese station, which exceeds
also the climatological average of precipitation in 1981-2010 (≃ 0.1 m), evalu-
ated by means of data collected by the hydrographic service. This peak in the
ground-based precipitation observation is not captured by the ERA5L precipita-
tion series, with a bias of 0.20 m/month between the observation and reanalysis.
Failing to be captured by the reanalysis, this discrepancy has affected the re-
production of the subsequent monthly lake level maintaining it lower also in
the following period, until 2016, when there is again a good match between
reanalysis and observations.

As a result of the above analysis, it can be affirmed that the precipitation biases
are responsible for the incorrect simulation of the lake level. However, as antic-
ipated in the results section 2.5.2, also the omission of the groundwater inflow
could have contributed to the incorrect simulation of the peak between 2012
and 2013. Indeed, the runoff (surface and subsurface) has been neglected, by
comparing it with the evaporation and precipitation fluxes on a monthly time
scale. This inaccuracy might have affected the lake level modeling in this pe-
riod. Indeed, in the period between 2017 and 2019, there were some intense
precipitation events (for example, on May 2019 (ISPRA, 2020), with a monthly
average of 0.18 m), that, although not comparable to those of 2012, are quite
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well simulated by the proposed model. Thus, the modeling has failed in an
extreme context, which, differently than in other cases, has probably caused
an increase in the groundwater level and, as a consequence, a non-negligible
groundwater flux. Thus, the proposed model could be expanded with the in-
clusion of a finer resolution groundwater fluxes modeling (e.g., by the SWAT
model (Cao et al., 2021)). This could be important, especially for future model
development in its application to other lakes around the globe, where the runoff
might not be negligible.

For what it concerns the biases in precipitation, the results obtained here are
in line with what was found in Central Italy where discrepancies between ob-
servations and ERA5 reanalysis precipitation have been noticed in general, and
specifically in the Trasimeno lake area, where yearly mean precipitation is over-
estimated by ERA5 reanalyses (Silvestri et al., 2022a). Moreover, in the lit-
erature, precipitation biases of ERA5 have been noted in other parts of the
world. In particular, in (Jiang et al., 2021) it is shown that even if the spatial
and temporal patterns of ERA5 are consistent with rain gauges, ERA5 tends
to overestimate the light precipitation events and underestimate moderate and
heavy precipitation events in China. Similarly, in (Xu et al., 2021) it is pointed
out that in certain seasons the precipitation data provided by ERA5 and ERA5L
can be outperformed by satellite data. However, it must be noted that this type
of limitations, i.e. the simulation of extreme events (drought and intense pre-
cipitation) are shared by other reanalyses, thus by the other GCMs worldwide
like IFS (Sillmann et al., 2013; Moon et al., 2018).

Regarding drought periods, the underestimation of the extent and persistence
of dryness is confirmed by the results of the Coupled Model Intercomparison
Project 5 (CMIP5) (Taylor et al., 2012b), which have shown a general underesti-
mation of the persistence of drought periods (Moon et al., 2018). Furthermore,
if the specific drought event that occurred in 2003 is considered, it has been
found that many hydrological models based on reanalysis or GCM input under-
estimate the intensity of the event (Schewe et al., 2019). Indeed, the causes
for the 2003 drought period lie in a positive feedback between soil moisture and
precipitation (Schär et al., 2004), inaccurately represented by GCMs, that show
contrasting behavior with observations (Taylor et al., 2012a).

With regard to the intense precipitation events, it has been assessed that, in
relation to their low resolution, GCMs tend to under-simulate the magnitude of
precipitation extremes (Sillmann et al., 2013). More specifically, for the Decem-
ber 2012 event, it must be noted that, while there is no specific literature about
it, there are some studies on events of similar nature, occurring in the same
period (October 2012), in some cases even passing over the lake area (Ferretti
et al., 2014). In these studies, although the diurnal cycle of precipitation has
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been adequately represented, an underestimation of extreme precipitation has
been noted, by using the numerical weather prediction version of two different
GCMs (Lee et al., 2016; Barthlott and Davolio, 2016).

Given the existence of these errors shared by the GCMs that produce the re-
analyses, it should however be noted that ERA5 and ERA5L reanalyses perform
better than other reanalyses when referring to precipitation in Europe (Hassler
and Lauer, 2021) and in other regions of the world (Tang et al., 2020).

Another simulation bias could be attributed to the ERA5L evaporation field. As
already mentioned, it coincides with the evaporation from inland water bodies
and it strongly depends on the lake cover fraction at the grid point. Such a
quantity, even in the case of P1-Lake, is never equal to 1, giving an average
evaporation from the lake that is 60% of the total evaporation from the grid
point. Thus, this might have resulted in an evaporation deficiency, which could
have had an impact on the simulation of the water balance, especially in the
drought periods, when the evaporation could have been underestimated.
Finally, the water mass balance does not take into account withdrawals. These
are human forcings that, in a closed and shallow basin such as the Trasimeno
lake, can be influential. Indeed, the water extractions from the lake are not
evenly distributed throughout the year but are supposed to occur mainly in the
summer season. In this dry period, there could have been withdrawals from
the lake to guarantee water for irrigating the crops in the surrounding area.
Even if the lake withdrawals are probably an order of magnitude smaller than
the contribution of precipitation and evaporation, their inclusion could have a
positive impact on the lake level simulation. Unfortunately, withdrawals, as the
groundwater level, are not monitored by local authorities.

2.7.Conclusions
In this study, a model based on data from global atmospheric datasets (reanal-
ysis) and water level measurements is proposed for evaluating the water budget
for small, shallow lakes. Precisely, data from ERA5 Land (ERA5L), provided
by ECMWF, are used for the case study of the Trasimeno lake in the Umbria
region, Central Italy, where level measurements are available since 1991. Re-
analysis data have been validated by considering both ground-based and satellite
observations. Compared to other possible approaches, what makes the proposed
one relevant is the fact that it uses a single source of climate data (i.e., ERA5L),
which has the advantage of being spatially consistent. In addition, ERA5L is
the only global reanalysis including a lake model (i.e., Fresh-water Lake model,
FLake), that provides the lake heat balance and, then it guarantees the relia-
bility of both the evaporation and precipitation fluxes.

The main results of the executed analysis are synthesized below:
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• lake surface temperature provided by FLake is in good agreement with
the satellite product GloboLakes (i.e., the lake surface water temperature,
LSWT) with a Root Mean Square Error RMSET of about 1 °C;

• precipitation provided by ERA5L is in good agreement with the ground-
based observations, with a Root Mean Square Error RMSEP of about
0.04 m;

• there is a strong link between the observed variation of the lake level,
∆H, and the values of the water storage, δ, evaluated as the difference
between precipitation and evaporation, with a Pearson coefficient larger
than 70% and a maximum value of 81% when the grid point located over
the lake (P1-lake) is considered;

• the series of the observed ∆H vs. δ, from ERA5L, indicate that a linear
link can be assumed with an RMSES equal to 0.31 m;

• discrepancies in the linear behavior happen in two periods characterized
in Europe by an extreme climate anomaly: the drought 2003-2005 and
the intense precipitation period 2013-2016, when reanalysis overestimates
and underestimates precipitation, respectively, and the groundwater in-
flow (not considered in the model).

This last aspect is related to the bias of the GCMs, like IFS, that produce the re-
analysis. Although ERA5L represents one of the best-performing reanalyses, the
water mass balance modeling needs to be improved to take into account both
the higher resolution fluxes and the reproduction of groundwater and surface
runoff, which may have influenced the poor simulation of the above-mentioned
extreme events.

Even with the mentioned shortcomings, the proposed model allows capturing
the monthly variability of the level of the Trasimeno lake, a lake where ground-
water in and outflow are in general negligible. As far as we know, this study is
among the first (see also Ayzel and Izhitskiy (2019)) to use reanalysis for mod-
eling the water mass balance of a lake. The relevance of this approach lies in
the fact that it can be used for other shallow lakes over the globe, where similar
conditions to the Trasimeno lake are met. Indeed, before applying this method
to other shallow lakes, the potential impact of factors other than precipitation
and evaporation needs to be evaluated: inflow and outflow, specifically consid-
ering groundwater, lake ice cover, the relation between the level and the surface
area, and the catchment use. In fact, Trasimeno lake has a very small basin,
compared to its watershed, and therefore the groundwater flow is negligible.
This is not true for other shallow lakes, such as Hulun lake (Cao et al., 2021)
and Tana lake (Setegn et al., 2011), with a catchment much larger than the
basin. In these cases, groundwater flow cannot be considered negligible, nor
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runoff (Cao et al., 2021). Moreover, some shallow lakes have tributaries, e.g.
rivers, and therefore their influence must be taken into account (Soja et al.,
2013; Setegn et al., 2011). Furthermore, many shallow and small lakes are in
subpolar regions where the presence of ice cover is not negligible (Gibson, 2002)
and this could change the evaporation regime (Wang et al., 2018) (although in
FLake such an effect is taken into account). The influence of the morphome-
try of the lake, which is neglected in FLake, could be relevant for other lakes
(Kebede et al., 2006; Li et al., 2019).

The overall performance of the model could improve by including lake with-
drawals, recharges, and specifically groundwater inflow. Both the proposed
model and the regional services would benefit from constant monitoring of lake
withdrawals, groundwater inflow (by a piezometric network), and level observa-
tions. Regarding this last aspect, at least one more station should be added on
the opposite side of the lake, as in literature (Li et al., 2007). This would allow
for increasing the reliability of the lake level observations and considering the
effect of the wind on the level measurement. Moreover, the consideration in
FLake of the water mass balance and a finer resolution of ERA5 – which both
could be achieved in the next few years by ECMWF – will certainly contribute
to a better prediction of evaporation, precipitation, and other feedback at the
surface, needed for the type of modeling reported in this work. Indeed, the work
presented here will be extended in the future by considering – where possible –
all the aspects mentioned above.

Beyond the above-discussed shortcomings, the model proposed in this study,
based on ERA5L data and lake level measurements, can simulate the behavior
over time of the level of the Trasimeno lake. Such a result confirms that as for
the simulation of the water table of shallow unconfined aquifers in the Umbria
region (Bongioannini Cerlini et al., 2017, 2021), reanalyses are an alternative
to other methods for modeling the water mass balance of inland water bodies.
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3. Convective Organization in Cloud
Resolving Models: The com-
peting effect of radiative and
moisture feedback

This chapter1 is concerned with the comparison of models run to a Radiative
Convective Equilibrium (RCE). The goal of the work is to provide insight into
convection, as reproduced by different Cloud Resolving Models. The goal of the
work, following the suggestion from the Radiative-Convective Equilibrium Model
Intercomparison Project (RCEMIP), is to identify key parameters controlling
self-aggregation in RCE for both models, to discuss the processes controlled
by these parameters and to underline the model’s similarities and differences.
The two CRMs studied, the SAM (System for Atmospheric Modeling) and
the ARPS (Advanced Regional Prediction System), present similar statistics
concerning precipitation, but different warming, and drying of the atmosphere,
within the spread of the RCEMIP values. The focus has been put particularly
on the different sensitivity of the two models on the moisture feedback, due to
the different saturation of the sub-cloud layer. The effect of cold pools is what
determines the difference between these two models, especially concerning the
localization of convection and the weaker effect of the organized state on the

1This chapter is a slightly different version of the paper that has been accepted for publi-
cation at the Journal of Advances in Modeling Earth Systems, JAMES : Cerlini PB, Saraceni
M, Silvestri L, Competing effect of radiative and moisture feedback in convective-aggregation
states in two CRMs, https://doi.org/10.1029/2022MS003323
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average domain statistics in one model compared to the other. The findings of
this chapter might be relevant to other RCEMIP CRMs.

3.1.Introduction
Radiative-convective equilibrium (RCE) of an ensemble of clouds has been used
as an example of a statistical equilibrium state of the atmosphere able to mimic
the tropical part of the climate system (Emanuel et al., 2014). Indeed, given the
crucial importance of the balance between radiative cooling and latent heating
due to condensation and surface-sensitive heat flux in the Tropics in the Earth’s
global balance, the RCE state of the atmosphere has become a proxy to study
the link between global circulation and convection (Held et al., 1993; Randall
et al., 1994; Pauluis and Held, 2002a,b; Yano and Plant, 2012).

The implicit assumption in this is that the tropical circulation may be larger
than the small-scale convective processes of an ensemble of clouds and that the
statistical equilibrium implied by the RCE state is based on processes in near-
equilibrium on different space and time scales with the large-scale flow. This
point was brought to general attention when the increased computing capability
available made it possible to run three-dimensional high-resolution simulations
(Tompkins and Craig, 1998; Bretherton et al., 2005) and to study the sensitivity
of RCE states using models with enhanced dimensions of the grid reaching the
dimensions of mesoscale processes, with explicit moist variables and different
physics parameterizations. Such models can simulate the space-time statistics
of an ensemble of clouds (Khairoutdinov and Randall, 2003) over domain sizes
with spatial extension up to hundreds of kilometers and for a length of time
much longer than that of a single cloud. This happens over homogeneous sur-
face conditions allowing the study of cloud interaction with the spontaneous
development of the convective organization (self-aggregation). Despite the dif-
ferences in parametrizations packages (e.g. microphysics, radiation, turbulence)
between models, they showed in some cases spontaneous self-aggregation of
clouds (Tompkins and Semie, 2017; Khairoutdinov and Emanuel, 2010; Jee-
vanjee and Romps, 2013; Ruppert Jr and Hohenegger, 2018; Holloway and
Woolnough, 2016; Hohenegger and Stevens, 2016).

The different model representation of cloud physics and convective processes
has been recognized as having a relevant impact both on the closeness between
modeled self-aggregation and observed atmospheric convective organization and
on the modeled climate sensitivity due to self-aggregation feedback (Wing et al.,
2020).In fact, within RCEMIP, the analyzed models, one-dimensional SCM,
three-dimensional CRM, and GCM were driven to RCE equilibrium, using a
predefined setup and initialization process to start from a similar RCE con-
figuration to provide a baseline for their comparison. Nevertheless, given the
statistical nature of the RCE equilibrium, which implies the dynamical equilib-
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rium of convection (Yano et al., 2012), and given the spread in the RCEMIP
models in their reproduction of convection, different results were produced by
the models due to their distinct sensitivity to the various climate parameters.
Furthermore, RCEMIP underlined that different model responses are linked to
differences in models physics and numerics (Wing et al., 2020). Thus, the ques-
tion remains as to which factors in the models are prevalent in aggregation.

Bretherton et al. (2005) and Muller and Held (2012) found that a low-level cir-
culation from the dry to moist regions, forced by longwave radiative cooling in
the lower troposphere, is responsible for self-aggregation, by transporting moist
static energy (MSE) up-gradient. Wing and Emanuel (2014), by using an MSE
variance budget confirmed that such a mechanism sustains self-aggregation in
its intermediate stages. Wing et al. (2017) refer to it as the ”indirect longwave
feedback”, in contrast to the direct diabatic feedback, which is caused by en-
hanced clear-sky cooling in the dry region relative to the moist regions. Besides
radiative feedback, another important role in convective aggregation is played by
moisture feedback, which can be related to three correlated factors (Wing et al.,
2017): anomalously moist boundary layer, cold pool activity, and entrainment.
In particular, Muller and Bony (2015) found that aggregation could be obtained
by suppressing rain evaporation, even in the absence of radiative feedback. This
mechanism was called “moisture-memory aggregation”, where moist regions re-
main moist, thus more favorable to convection (Tompkins, 2001b; Craig and
Mack, 2013). In the following, as usually adopted in literature, we will refer
to the moisture-convection feedback as positive “moisture-memory feedback”.
However, a strong cold pool activity, which in general acts to disperse convec-
tion, can be regarded as negative moisture feedback. Such feedback can be
considered as a factor changing the organization of convection when, given a
moist atmosphere, the efficiency of precipitation is high and less precipitation
evaporates (Emanuel, 2021; Held et al., 1993).

The results of RCEMIP and the literature regarding convective organization
experiments (Wing and Emanuel, 2014; Yang and Tan, 2020), brought us to
hypothesize that there can be different sensitivities to the moisture feedback.
In particular, the content of humidity of the mid-troposphere, related to the
properties of the cloud and the sub-cloud layers, can change the prevailing
factors that bring to self-aggregation. While this has already been proven by
suppressing the rain evaporation artificially within the same model (Jeevanjee
and Romps, 2013; Muller and Bony, 2015), it might occur within the RCE
experiments due to the wide spread of the relative humidity and temperature
profiles, observed in the RCEMIP experiment.

For these reasons, this study sets out to compare two models in their reproduc-
tion of convection statistics: the Advanced Regional Prediction System (ARPS,
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Oklahoma University (OU), (Xue et al., 2000, 2001)) and the System of Atmo-
spheric Modeling (SAM) (Khairoutdinov and Randall, 2003). ARPS is a state-
of-the-art reference model from its use in three-dimensional simulations based
on a non-hydrostatic formulation of conservation equation for momentum, en-
ergy, and water variables used for Numerical Weather Predictions (NWP) (Xue
et al., 2014; Sun et al., 2021b). It is recalled here that this model, although
very similar to the most used WRF model (Skamarock et al., 2005), was not
included in the RCEMIP (Wing et al., 2020). Therefore, this is the first study
that investigates self-aggregation with such a model. The SAM model, based
on the anelastic approximation, is formulated to conserve the liquid/ice static
energy, which is a standard variable to study an ensemble of clouds that is con-
tinuously forced in a RCE simulation. Thus, SAM has been extensively used to
study convective self-aggregation (Bretherton et al., 2005; Wing and Emanuel,
2014; Muller and Held, 2012; Emanuel et al., 2014).

The aggregation of convection is in fact an indication of the internal oscillation
of the model in an RCE configuration, where the boundary conditions are peri-
odic and the lateral energy transport is absent, causing the model to reproduce
a statistical oscillation of convection within the system. By reaching the sta-
tistical equilibrium of precipitation, one can study the statistical oscillation of
convection within two families of models, and their intrinsic process of convec-
tive organization. In the SAM model, this oscillation is obtained by conserving
the liquid/ice static energy while in the ARPS model, there is a separation
of dynamic and thermodynamic variables. The comparison starts from an ini-
tial model neutral state, crucial to start the dominant processes on the model
domain since how convection is organized depends on the intrinsic character-
istics of the models (Wing et al., 2020; Yang and Tan, 2020; Pope et al., 2021).

Furthermore, the results of RCEMIP show that SAM-CRM and the WRF mod-
els (WRF-CRM and WRF-COL-CRM) are positioned differently in the RCEMIP
spread regarding the degree of aggregation metrics, with WRF models present-
ing lower values for all aggregation metrics. Indeed ARPS, as mentioned above,
is very similar to WRF and specifically to WRF-CRM, because, besides the nu-
merical similarities they share the same radiation scheme, the Goddard Scheme
(Chou and Suarez, 1999). Different values of aggregation metrics are a sign of
the underlying differences in the feedback roles on self-aggregation shown by
the two models.

Thus, the questions posed here, stemming from the main research question,
are:

• What are the statistical properties of convection when each of the models
reaches a stable state?
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• Are there similar aggregation processes in the two models?

• Are there different strengths of the moisture feedback in the two models?

In Section 3.2 the two models, the numerical simulation setup and the initial-
ization are described. In Sections 3.4 and 3.5 the results of the convective
organization statistics, the cloud properties, and the convective organization
feedback are described and discussed. In Section 3.6 a summary of the work is
given.

3.2.Numerical Simulations
3.2.1.The SAM model

The first simulation is performed by using the System of Atmospheric Mod-
eling (SAM), version 6.10.6, (Khairoutdinov and Randall, 2003). SAM solves
the anelastic continuity, momentum, and scalar conservation equations. The
prognostic thermodynamic variables are the total non-precipitating water (qT =
qv + qc + qi = water vapor + cloud water + cloud ice), the total precipitating
water (qp = qr + qs + qg = rain + snow + graupel) and the liquid/ice static
energy, hL = cpT + gz−Lv(qc + qr)−Ls(qi + qs + qg), with Lv and Ls being
the latent heat of vaporization and sublimation, respectively. By definition, hL
is conserved during the moist adiabatic processes (including freezing/melting
of precipitation).

Given hL, qT and qp, the mixing ratio of the various hydrometeors (qc, qi, qr,
qs, qg) is diagnosed by partitioning relationships that depend only on tempera-
ture. The diagnosed mixing ratios are used to compute the water sedimentation
and hydrometeor conversion rates through a bulk microphysics scheme, where
the autoconversion of cloud water into rain is evaluated through the Kessler
scheme, while ice aggregation is parametrized similarly to (Lin et al., 1983).
Cloud ice is considered non-precipitating water but it is allowed to fall with
its own terminal velocity VTI = 0.4 m/s (Khairoutdinov and Randall, 2003).
Longwave and shortwave radiative fluxes are computed using the radiation code
from the National Center for Atmospheric Research (NCAR) Community At-
mosphere Model (CAM) version 3.0, (Collins et al., 2006).

We choose a first-order Smagorinsky closure scheme for subgrid-scale (SGS)
turbulence. The same SGS parametrization was used in previous studies by
(Bretherton et al., 2005; Muller and Held, 2012; Wing and Emanuel, 2014).
Surface fluxes are interactively computed according to the Monin-Obukhov sim-
ilarity theory.

3.2.2.The ARPS model
The second simulation is performed by using the Advanced Regional Predic-
tion System (ARPS), version 5.3.4, (Xue et al., 2000, 2001). ARPS solves the
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fully compressible conservation equations for mass, momentum, heat, and wa-
ter substances (water vapor, liquid, and ice). The thermodynamic prognostic
variables are the potential temperature, pressure, and the mixing ratio for six
water species (water vapor, qv, cloud water, qc, cloud ice, qi, rain, qr, snow, qs
and hail,qh).

Precipitation is computed through a bulk microphysics scheme where auto-
conversion of cloud water into rain is evaluated through the Kessler scheme
(Kessler, 1969) and ice aggregation is treated with the three ice categories
(cloud ice, snow, and hail or graupel) scheme of Lin et al. (1983).

The radiation code is adopted from the NASA/Goddard Space Flight Center,
with shortwave radiative fluxes based on the model of Chou (1990) and long-
wave radiative fluxes based on the model of Chou and Suarez (1994). Surface
fluxes are computed according to the Monin-Obukhov similarity theory and a
first-order Smagorinsky scheme has been chosen for turbulence closure.

Table 3.1: Main properties of the two numerical models and simulations: the model
version; the horizontal resolution, ∆x; the size of the squared domain; the total running
time; the radiation, microphysics, sub-grid scale mixing and surface fluxes parametriza-
tions.

SAM ARPS

Model version 6.10.6 5.3.4
∆x (km) 3 3
Domain size
(km)

1152 1152

Run time
(days)

160 158

Radiation
(Fully interac-
tive)

CAM version 3.0 (Collins
et al., 2006)

NASA/ Goddard (Chou,
1990; Chou and Suarez,
1994)

Microphysics Original SAM single-
moment (Khairoutdinov
and Randall, 2003)

Warm-rain Kessler scheme
(Kessler, 1969), Ice Lin
scheme (Lin et al., 1983)

Subgrid-scale
mixing

First-order Smagorinsky First-order Smagorinsky

Surface fluxes
(Fully interac-
tive)

Monin Obukhov similarity Monin Obukhov similarity
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3.2.3.Numerical setup and initialization
The SAM simulation is performed over a doubly periodic domain with a size
of 1152 × 1152 km2 and a uniform horizontal resolution of 3 km. We use 64
vertical grid levels with a rigid lid at the top at about 27 km. The first level
is at 25 m and grid spacing gradually increases from 50 m near the surface to
500 m above 5 km. Then, it increases again from 500 m to 1 km above 20 km.
Newtonian damping is applied to all prognostic variables in the upper third of
the model domain (above 18 km). At the bottom, there is an oceanic surface
with a constant sea surface temperature of 302 K, which was considered as
the lower limit for self-aggregation to happen in Wing and Emanuel (2014).
The simulation is run with fully interactive radiation and diurnal cycle as done
in Stephens et al. (2008); Ruppert Jr and Hohenegger (2018); Tompkins and
Semie (2017). The domain central latitude is set to zero. There is no mean
wind and no rotation.

The ARPS simulation has the same horizontal resolution and domain size as the
SAM simulation. We use 62 vertical levels with a rigid lid at the top at about
25 km. The first level is at 35 m and grid spacing is 35 m up to 140 m. Then
the vertical grid is gradually stretched from about 70 m to about 700 meters
up to 20 km. Above 20 km the grid spacing is about 800 m. Rayleigh damping
is applied above 19 km. As done for the SAM simulation, ARPS is run with a
diurnal cycle and fully interactive radiation. The domain central latitude is set
to zero and there are no mean wind and no rotation. The oceanic surface has
a constant SST of about 302 K.

The main properties of numerical models and simulations are summarized in
Table 3.1. Both simulations run for about 160 days. SAM runs with a time-step
of 10 s, while ARPS runs with a time-step of 6 s. Output fields are generated
every 6 hours. ARPS and SAM large domain simulations are initialized from
the equilibrium sounding of a corresponding smaller domain RCE simulation.
Then, convection in the large domain SAM simulations is initiated by adding
white noise to the hL in the lowest five levels, with an amplitude of 0.1 K in the
lowest level linearly decreasing to 0.02 K in the fifth level. On the other hand,
in large-domain ARPS simulations, convective motions are initiated by applying
a random perturbation of magnitude 0.2 K to the potential temperature field
over the whole domain.

3.3.Small domain simulations
ARPS and SAM large domain simulations are initialized from the equilibrium
sounding of a corresponding smaller domain RCE simulation (see ARPS and
SAM profiles in Figures 3.1c and 3.1d). The small domain of ARPS has a size
of 100 km x 100 km, almost equal to that of SAM (96 km x 96 km). Both
small domain simulations are run for 80 days and they are initialized by using
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a sounding obtained from a previous run of the SAM model in RCE equilib-
rium without self-aggregation. The final equilibrium sounding is obtained by
averaging over the last 10 days of the small domain simulations. Averaging
over longer time periods, such as 20 or 30 days, made a small difference in the
final soundings (not shown) since the equilibrium state was very stable for both
models.

The initial conditions of ARPS and SAM large simulations, corresponding to
the final equilibrium states of small domain RCE simulations, turned out to be
very different, even if the latter started from the same initial sounding. Figure
3.1 shows how the equilibrium state of ARPS is colder (Figure 3.1c, vertical
profile of temperature) and drier (Figure 3.1d, vertical profile of water vapor
mixing ratio) than that of SAM.

One could ask whether this equilibrium state in ARPS is sensitive to the initial
conditions or to the model settings. Therefore, we perform three sensitivity
experiments on the small domain simulations: first, we initialize the simula-
tions by using the analytic sounding and the model levels as prescribed in the
RCEMIP protocol by Wing et al. (2018) (ARPS-rcemip, SAM-rcemip in Figure
3.1); second, we increase the CO2 concentration of ARPS from 300 ppmv to
355 ppmv (ARPS-co2) in order to be equal to the standard values of SAM (and
closer to the value of 348 ppmv as prescribed by Wing et al. (2018)); third, we
add together the changes described in the first and second experiment (ARPS-
rcemip-co2). Figure 3.1 shows that the final equilibrium state is similar among
all the experiments, both for ARPS and SAM models. Therefore, we can state
that the drier and colder equilibrium state of ARPS would have occurred even
if we had slightly different initial soundings or higher CO2 concentrations.

The colder and drier profile of ARPS turns out to be crucial for later stages
of convective aggregation. Therefore we briefly introduce here some elements
leading to the decrease in temperature and humidity of the ARPS domain. Fig-
ure 3.2a shows the non-aggregated state of the small domain simulation after
75 days. Precipitable water (Figure 3.2b) drops very quickly from about 60
mm to 42 mm, while the daily precipitation rate exhibits an opposite behavior
by increasing abruptly to about 6.5 mm/day (Figure 3.2b). After a few days
of simulation, the small domain is entirely covered by a very thin anvil cloud
which remains there until the end of the simulation (Figure 3.2c). Figure 3.2
confirms the presence of a large anvil cloud fraction also on the ARPS-rcemip
experiments, thereby confirming the role of anvil clouds in cooling the ARPS
domain, as described above.

The average cooling and drying of the ARPS domain are due to the presence
of such an anvil which blocks the incoming solar radiation. Such high cloud
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Fig. 3.1: Initial (a,b) and final (c,d) vertical profiles of absolute temperature (T )
and water vapor mixing ratio (QV ) for all small domain simulations used to initialize
the large domain simulations. Each Figure contains also the comparison with the
analytic profiles dictated by the RCEMIP protocol, together with results from ARPS
and SAM simulations initialized by the RCEMIP Protocol (ARPS-RCE and SAM-RCE,
respectively).
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Fig. 3.2: Snapshots of PW at day 75 (midnight) on the small domain used to initialize
ARPS simulation (same contours and colors used in Figure 3.3) (a). Time evolution of
daily averaged precipitation rate and precipitable water over the ARPS small domain
(b). Cloud fraction and total cloud condensate averaged over the last 20 days of the
small domain simulations (c). As adopted in RCEMIP (Wing et al., 2020), a cloud is
defined according to a threshold value of cloud condensate (10−5 kg kg−1 or 1% of
the saturation mixing ratio over water, whichever is smaller), and a cloud fraction of
1.0 at a particular model level indicates that the entire domain is covered in clouds at
that level.

fraction over small domain simulations of RCE has been found also during the
RCEMIP project by Wing et al. (2020) (see Figure 9 in the article) and therefore
it is not related only to the specific model configuration.

When initializing the large domain ARPS simulation, the cloud water and ice at
12 km, produced by the smaller domain, are removed, removing the large anvil,
while leaving its effect on the vertical profile of temperature and water vapor.
Therefore convective motions of ARPS start in a drier and colder domain than
those in SAM.
The main mechanisms behind the anvil formation in the ARPS small domain
rely on the properties of the microphysics scheme adopted by the model, as
mentioned in the previous section. Further details are provided in Section 3.5.
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3.4.Results
3.4.1.Statistics of convective organization

In SAM and ARPS large domain simulations the precipitation rate reaches a
statistical equilibrium, with similar values of 4.2 mm day−1 in SAM and of 4.1
mm day−1 in ARPS. The domain average statistics of the simulations final
stages are reported in Table 3.2. In SAM, an RCE state is reached, where the
total heat flux (THF, sum of the latent heat flux LHF and sensible heat flux
SHF) is in balance with net column radiative cooling (RNET ), and the LHF,
which dominates the THF, is in balance with precipitation (Precip) (see Ta-
ble 3.2). In ARPS, instead, the net atmospheric energy imbalance, FNET , is
greater than in SAM (FNET = 26 Wm−2 for ARPS and FNET = 7.32 Wm−2

for SAM), reaching a value similar to that obtained for the model WRF-CRM
in RCEMIP (see Table 3.2).
Both model simulations present the convective organization as it is shown by

Table 3.2: RCE average statistics over the aggregated state (days 115-120) of simula-
tions, following Table A2 of (Wing et al., 2020). The values for the RCEMIP SAM-CRM
model, RCEMIP WRF-CRM model, and the average (± the standard deviation) of all
RCEMIP models are reported in the last three columns for a direct comparison. Such
values are directly taken from Table A2 or the text of Wing et al. (2020). FNET is the
atmospheric energy imbalance, that is the magnitude of the difference between RNET

and the total surface thermal fluxes; RNET is the column integrated atmospheric ra-
diative forcing (negative values indicates net atmospheric radiative cooling) which is
obtained directly by column integration of the radiative forcing (qrad, prognostic vari-
able); LHF and SHF are surface latent and sensible heat (positive values indicates
fluxes into the atmosphere); PW is the precipitable water; Precip. is the daily precip-
itation rate; LWP and IWP are the cloud liquid water path and cloud ice water path
respectively. LR is the tropospheric (15 km) Lapse Rate; Ts, RHs are respectively the
absolute temperature and the relative humidity at the lowest model level; Iorg, σ2

CRH

and fsub are the three metrics of aggregation used in the RCEMIP experiment.

Var Unit SAM ARPS RCEMIP-SAM RCEMIP-WRF RCEMIP-AVG (STD)

FNET W m−2 7.32 26 3.87 21.73 4.12 (±5.66)
RNET W m−2 -123.03 -102.7 -118.05 -106.54 -110.17 (±16.08)
LHF W m−2 122.24 65.7 113.15 90.37 101.93 (±15.29)
SHF W m−2 8.1 11 8.77 37.90 11.16 (±5.74)
PW mm 27 38.1 31.2 41.2 32.8 (±4.1)
Precip. mm day−1 4.3 4.2 3.9 3.1 3.5 (±0.5)
LWP mm 0.051 0.015 0.048 0.065 0.041 (±0.028)
IWP mm 0.021 0.007 0.025 0.097 0.037 (±0.038)
LR K km−1 -6.68 -7.08 -7.2 -6.91 -6.83 (±0.65)
Ts K 299.9 298.3 297.9 299.5 n/a
RHs % 66 75 69 58 73 (n/a)
Iorg 0.9 0.6 0.91 0.47 0.60 (0.163)
σ2
CRH 0.04 0.02 0.03 0.001 0.027 (0.015)

fsub 0.74 0.66 0.75 0.52 0.69 (0.108)

the Precipitable Water (PW) pattern evolution in Figure 3.3a-3.3h. In both
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simulations, moister regions are clustered and present the highest value of to-
tal integrated water condensate (see black contours in Figure 3.3a-3.3h) and
extreme values of precipitation rate (see Figure 3.3i-3.3p).

As underlined in Yano et al. (2012), such features can be interpreted as a
signature of self-organized criticality. The time evolution of the precipitation
rate of ARPS and SAM (Figure 3.3i-3.3p), clearly shows a different spatial
distribution that corresponds to a more limited precipitation range in intensity
in ARPS than in SAM. This is further analyzed in Figure 3.4, which shows the
distribution of number occurrence as a function of column water vapor and the
precipitation rate.
In fact, Figure 3.4 underlines the simulations similarity and differences. Indeed,
on one hand, it points out that in both simulations water vapor presents a
homeostasis behavior, confirming the analysis of Yano et al. (2012). The fre-
quency distribution of column water vapor is asymmetric as a function of the
corresponding amount of precipitation, and in the critical self-organized state,
precipitation is forced into a strongly limited range even with a rapid increase in
column water vapor. On the other hand, a dramatic difference between ARPS
and SAM stands out from Figure 3.4: a much narrower range of column water
vapor in ARPS than in SAM, for a given precipitation.

Convective organization in both SAM and ARPS has an impact, as a whole, on
the simulated atmosphere, leading to its warming and drying, as it is reported
in Figure 3.5a, 3.5b and 3.5c.
The warming produced by the organization process can be inferred from the
mean state profiles of MSE, Temperature (T), and Relative humidity (RH)
averaged at equilibrium (between 115-120 days) over the whole domain with
respect to the initial ones (averaged between the first 5-10 days). These results
are in line with the main results of the RCEMIP (Wing et al., 2020) who found
that there is a robustness of the results on heating and drying of the mean
state with convective organization among models. The temperature and rela-
tive humidity profiles of both SAM and ARPS are within the ensemble spread
of RCEMIP mean state profiles (see Figures 7 and 8 of Wing et al. (2020)).
However, SAM final state is warmer and drier than the ARPS one (Figure 3.5).
This is also evident from the values at the surface shown in Table 3.2, which
are near the RCEMIP range values. The surface relative humidity (RHs) is
66% for SAM and 75% for ARPS and the surface temperature (Ts) is 299.9
K for SAM and 298.4 K for ARPS. As already stated in the previous section,
given the different initialization, ARPS starts already with an initial colder pro-
file compared to SAM.

The warmer and drier final state of SAM is reflected also in the values of the
surface fluxes (see Table 3.2). Given the smaller RHs in the SAM model, the
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Fig. 3.3: Time evolution of Precipitable Water (PW, filled contours) for ARPS
(a,b,c,d) and SAM (e,f,g,h) simulations. The region where aggregation occurs is
moister and presents a higher PW (lighter colors). For both models, snapshots are
taken at midnight after 10 (a,e), 35 (b,f), 75 (c,g), and 120 (d,h) days. The thick white
line represents the boundary between moist and dry patches, taken as PW=40 mm.
Black lines are contours of column-integrated water condensate of 1 mm. Time evolu-
tion of Precipitation rate (Prec, filled contours) for ARPS (i,j,k,l) and SAM (m,n,o,p)
simulations. For both models, snapshots are taken at midnight after 10 (i,m), 35 (j,n),
75 (k,o), and 120 (l,p) days. The thick black line represents the boundary between
moist and dry patches, taken as PW=40 mm.
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Fig. 3.4: Distribution of number occurrence as a function of column water vapor
(horizontal axis, mm) and the precipitation rate (vertical axis, mm/h ) for ARPS (a)
and for SAM (b). The bin sizes are 2.5 mm for the water species and 1 mm/h for
precipitation. The solid curve in each panel shows the mean precipitation rate as
defined for each column-integrated water bin.
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Fig. 3.5: Horizontally averaged profiles of Moist Static Energy (MSE) (a), absolute
Temperature (T) (b), and Relative Humidity (RH) (c) for the two simulations, averaged
at the initial stage (5-10 days) and at the final aggregated state 115-120 days).

LHFs are larger (LHF = 122.24 W m−2) than those of ARPS (LHF = 65.7 W
m−2). On the other hand, given the smaller Ts of ARPS, the SHFs are larger
(SHF = 11 W m−2) than those of SAM (SHF = 9.1 W m−2).

By looking at the time evolution of PW in the two simulations (Figure 3.6), it
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can be noted that in SAM the convective organization leads to a decrease of
PW of 10 mm, while the ARPS PW decreases by only 2 mm.
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Fig. 3.6: Time evolution of Precipitable Water (PW) for both simulations. Precipitable
water is evaluated by considering all condensates.

In SAM such a high decrease is driven mainly by the expansion of dry areas,
as shown by the moisture-sorted time series of the Water Vapor Path (WVP)
(Figure 3.7). These are computed by dividing the two simulations domain into
blocks of equal area (96 km2), and then sorting them into four quartiles from
driest to moistest, based on their daily WVP.
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Fig. 3.7: Moisture-sorted time series of the daily averaged Water Vapor Path (WVP)
g/m2 for ARPS (a) and for SAM (b). The thick lines are the domain mean and the
other curves are the means over the 96 km2 blocks sorted into four quartiles based on
their daily WVP.

Figure 3.7b shows that in SAM there is a very large inter-quartile difference,
driven by a rapid decrease of WVP in the driest quartile which starts suddenly
after the beginning of the simulation. On the other hand, moist regions get
moister only after 40 days. In ARPS (Figure 3.7a), the interquartile difference is
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smaller, since WVP in dry regions does not exhibit a drastic decrease as in SAM.
Moreover, moist regions in ARPS get moister before dry regions start to get
drier. This striking difference between the two models indicates that different
organization feedback are at play. The same concepts can be drawn by looking
at the column relative humidity (CRH) evolution which is included in Figure
3.9, for the sake of completeness. While Figure 3.7 shows that SAM simulation
starts from a higher value of WVP with respect to ARPS, the average CRH
of SAM (Figure 3.9) is close to the ARPS one, indicating that ARPS columns
are drier and colder. This may play a significant role in the initial stages of
convective aggregation, where the initial convective oscillation in ARPS (Fig-
ure 3.3a) shows the presence of many dry regions with similar extent to the
moist ones, while in SAM, the strong decrease of PW is concentrated in a few
regions (Figure 3.3e).

ARPS SAM

a)

b) c)

Fig. 3.8: The daily Organization index (Iorg) for SAM and ARPS, as computed by
(Tompkins and Semie, 2017) is reported in (a), while the corresponding cumulative
density function of the calculated Nearest Neighbor distances (NNCDF) versus nearest
neighbor distance of observed and Weibull distribution is displayed for ARPS in (b) and
for SAM in (c).

In order to quantify the degree of convective organization we followed the same
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approach of (Wing et al., 2020), by computing three different metrics: the Or-
ganisation index (Iorg) (Tompkins and Semie, 2017), the subsidence fraction
(fsub) (Coppin and Bony, 2015) and the spatial variance of column relative hu-
midity (σ2

CRH) (Wing and Cronin, 2016). Iorg compares the cumulative density

25 50 75 100 125

Rank of column by CRH (low to high)

20

40

60

80

100

120

T
im

e
(d

ay
s)

SAM

25 50 75 100 125

Rank of column by CRH (low to high)

ARPS

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

CRH

a) b)

Fig. 3.9: Block averaged daily mean column relative humidity (CRH) for SAM in (a)
and for ARPS in (b).

function of the nearest-neighbor distances between convective cores (NNCDF)
of the simulated convection to the one expected for a random distribution of
the same number of convective cores. It is based on calculating the NNCDF
of the simulation updraft grid cells, considering the vertical velocity field, w,
at 500 hPa and the threshold between updraft and downdraft at w = 0.5
m/s. Then the NNCDF of the model simulation is compared to the theoretical
random distribution of the same cores, the Weibull distribution (NNCDF =
1 − exp (−λπr2), (Weger et al., 1992)), where λ is the number of points per
unit area and r is the nearest neighbor distance. Iorg is obtained by calculating
the area below the line of the graph of simulated versus theoretical NNCDF. A
value of 0.5 or less represents random convection over the domain. The higher
the value, the more organized the convection is. It must be noted that the
Iorg values of RCEMIP reported in Table 3.2 were computed by using Outgoing
Longwave Radiation as opposed to the vertical velocity used here. fsub is the
area fraction of the domain where the daily average and block average (96 x
96 km2) large-scale vertical velocity at 500 hPa is directed downward. Finally,
σ2
CRH is self-explanatory.

As can be seen in Table 3.2, SAM has larger values for all the metrics, indicating
a more aggregated convection. While the statistics for our SAM simulation are
nearly the same as RCEMIP-SAM, the ARPS ones are different from RCEMIP-
WRF since the latter model did not attain a state of convective organization.
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The lower value of σ2
CRH at the end of the simulation in ARPS confirms the

lower interquartile range of WVP between dry and moist regions, while the
lower value of fsub at the end of the simulation in ARPS is a clear indication
of fewer subsidence regions in the domain compared to SAM. Lastly, the Iorg
indicates that SAM undergoes a strongly organized convection, while in ARPS
the convection is less aggregated (Figure 3.8a).

This result holds for different thresholds of updraft velocity, ranging from 0.5
to 0.7 m/s (not shown). Indeed, for SAM after 70 days, when the threshold
exceeds 0.7 m/s Iorg presents very large oscillations, due to the small amount
of selected updraft cores. However, up to 70 days, SAM always presents a
greater Iorg than ARPS for the same thresholds. The NNCDF in ARPS (Figure
3.8b) indicates the presence of regular convection at distances less than 10 km,
while the clustering occurs at larger spatial scales, up to 60 km. This regular
convection is noticeable also in Figure 3.3c and Figure 3.3d, where total column
water condensate is also present outside the main aggregated region. A similar
distribution was obtained from WRF-RCE simulations (Tompkins and Semie,
2017) and also from satellite observations of tropical convection (Semie and
Bony, 2020). This regular convection is absent in SAM (Figure 3.8c), since
any new convective core develops only in the already aggregated zone. Indeed,
in Figure 3.3h only one cluster is present, made by very small and packed
convective structures.

3.4.2.Cloud properties
The difference in the cloud properties in the two models is underlined in Figures
3.10a, 3.10b, 3.10c and 3.10d, which show respectively the radiative heating
rate, the cloud fraction, the cloud water and the cloud ice at the initial stage
(averaged between 5-10 days) of the considered simulations. As adopted in
RCEMIP (Wing et al., 2020), a cloud is defined according to a threshold value
of cloud condensate (10−5 kg kg−1 or 1% of the saturation mixing ratio over
water, whichever is smaller), and a cloud fraction of 1.0 at a particular model
level indicates that the entire domain is covered in clouds at that level.

The cloud fraction profiles at the initial state are very different among the two
simulations, especially regarding the high-level clouds (> 8 km). This is also
visible in Figure 3.11, where the anvil clouds evolution is shown. The peak
high cloud fraction (“anvil”) is very large for ARPS: the ARPS anvil is located
between 10 and 15 km and occupies almost the whole domain, reaching an
average value of cloud fraction of 0.9. On the other hand, SAM presents fewer
anvil clouds (peak cloud fraction around 0.13 at 12 km height), containing a
higher amount of ice than those of ARPS (see Figure 3.10d). These features
depend on the different ice distributions over the domain, on the cloud defini-
tion, and on the different microphysics of the models.
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Fig. 3.10: Radiative Heating rate, cloud fraction, cloud water, and cloud ice for the
initial state (a,b,c,d) and the final state (e,f,g,h) of the two simulations. The initial
(final) state is averaged over the days 5-10 (115-120) days for both simulations.

Firstly, in ARPS, anvil clouds can be classified into two types: lower anvils at the
top of deep convective towers (secondary peak cloud fraction at 10 km) which
contain a higher amount of ice (more than 10−5 kg/kg); high cirrus clouds with
a lower amount of ice (less than 10−5 kg/kg) that remain after the dissipation
of convective systems and occupy most of the domain. Both cloud types are
homogeneously distributed over the moister and the drier zones of the domain.
In SAM, on the other hand, a high amount of cloud ice is concentrated in a few
moister portions of the domain. Therefore, when computing the cloud fraction,
the threshold in the cloud definition produces a higher anvil in ARPS due to the
small values attained by the cirrus remnants clouds, which are comparable to
the threshold of the 1% of saturation mixing ratio and are spread all over the
domain. The threshold used in the cloud definition is responsible for producing
too much cloud fraction as underlined by Stauffer and Wing (2022). By using
a fixed threshold of 10−5 kg/kg throughout the atmosphere, the anvil cloud
fraction of ARPS reduces, but it remains larger than that of SAM (not shown).
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Fig. 3.11: Time evolution of Precipitable Water (PW, filled contours) for ARPS
(a,b,c,d) and SAM (e,f,g,h) simulations and total water condensate at height of 12
km. The region where aggregation occurs is moister and presents a higher PW (lighter
colors). For both models, snapshots are taken at midnight after 10 (a,e), 35 (b,f),
75 (c,g), and 120 (d,h) days. The thick white line represents the boundary between
moist and dry patches, taken as PW=40 mm. Black lines are contours of total water
condensate of 0.4 g/kg at a height of 12 km, representing high-level anvil clouds.

Another important difference is in the time evolution of cloud ice, which in SAM
it is already present at the first time-steps of the simulation, while in ARPS it
is almost null. The reasons behind the huge difference in cloud ice at the initial
stages reside in the way ice is created, advected, and transformed into the two
models. Firstly, in ARPS, ice is a prognostic quantity and it is directly advected
and mixed. The only source of ice is through microphysical processes. In SAM
the ice amount is conserved together with cloud water amount and water vapor
and is diagnostically obtained from temperature and saturation mixing ratio at
each level. Thus, initially, the cloud ice amount in SAM is higher than in ARPS
because in ARPS it takes some time for the microphysical processes to produce
it, while in SAM it is already present at the second time-step.

The difference in microphysics also plays a role. Khairoutdinov et al. (2022)
showed that the single moment microphysics of SAM, as used in this article,
underestimates the amount of high cloud. This is also visible from our results,
where the high cloud fraction is much less than in the ARPS model, where
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different microphysics is used. An important difference in the microphysics
parameterization between the two models is the presence of ice sedimenta-
tion, which in SAM is permitted, with an ice terminal velocity of 0.4 m/s. In
(Khairoutdinov and Randall, 2003) it was verified that the presence of ice sed-
imentation in SAM leads to a reduced anvil above 9km. Thus, in the absence
of ice sedimentation, the anvil in SAM would have been more extensive.

The different radiative heating profiles between ARPS and SAM, as shown in
Figure 3.10a, demonstrate that the above-discussed differences in high-level
cloud properties are relative to radiatively active clouds and not only to clouds
artificially generated by the chosen cloud definition. The presence of a thick
anvil in ARPS heats the upper troposphere, while it cools the middle and lower
troposphere (Figure 3.10a). In SAM there is cooling in all troposphere except
for the top of the anvil at 15 km. This is because ice cirrus clouds act to reflect
incoming shortwave radiation and entrap long-wave radiation from the clouds
below (Liou, 1986; Schlimme et al., 2005). At the beginning (0-5 days), both
models present similar radiative heating rate profiles between moist and dry
regions (not shown).

However, after day 10 the situation has changed in ARPS, especially in the
mid-level troposphere, where strong differential heating is developed between
the dry and moist regions (see Figure 3.12a). Deep clouds are mostly concen-
trated in moist regions causing a strong reduction of longwave cooling. This
direct diabatic effect of high-level clouds is known to be a strong longwave
positive feedback for the maintenance of convective aggregation (Wing et al.,
2017). However, in our simulation, this effect could be important also in the
triggering phase of aggregation, since it is visible from the beginning of the
ARPS simulation. The same cannot be said for the SAM model, where the
main differential radiative heating is driven by low-level clouds after 20-25 days
(see Figure 3.12b). Indeed at early time-steps, at the top of the boundary layer,
SAM presents a simulated cloud fraction slightly higher than ARPS (see also
Figure 3.13), with a low-level cloud cover fraction > 0.1 and a higher content
of qc (qc = 0.015 g/kg for SAM and qc = 0.009 g/kg for ARPS). The presence
of low clouds in SAM is known to be a necessary factor for convective organiza-
tion (Muller and Held, 2012; Wing and Emanuel, 2014; Muller and Bony, 2015).

With the convective organization, the anvil cloud fraction is greatly reduced
both in ARPS and SAM as is shown in Figure 3.10f. This may be a signal
of the Iris effect presence in both models. However, to properly assess this
phenomenon, additional analyses would have been needed, going beyond the
scope of the article. At the same time, the cloud ice decreases in SAM, almost
by half, while it increases in ARPS (Figure 3.10h). Such increase in ARPS
is concentrated in the moist regions, where cloud ice reaches values of 0.020
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Fig. 3.12: Average values of the CRH blocks-quartiles binned of the radiative heating
(QRAD) between the 20th and 25th day for ARPS (a) and SAM (b), between the 50th
and 55th day for ARPS (c) and SAM (d) and between the 115th and 120th day for
ARPS (e) and SAM (f).

g/kg (not shown), comparable to those reached by SAM at the initial stages.
Such an increase in anvil cloud ice amplifies the differential radiative heating
between moist and dry regions at later stages of aggregation (see Figure 3.12c
and 3.12e).

Thicker anvils are more efficient in blocking the removal of heat in the con-
vective region, with respect to dry regions. Thus, a larger amount of heat
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Fig. 3.13: Time evolution of Precipitable Water (PW, filled contours) for ARPS
(a,b,c,d) and SAM (e,f,g,h) simulations and total water condensate at height of 1.5
km. The region where aggregation occurs is moister and presents a higher PW (lighter
colors). For both models, snapshots are taken on midnight after 10 (a,e), 35 (b,f),
75 (c,g) and 120 (d,h) days. The thick white line represents the boundary between
moist and dry patches, taken as PW=40 mm. Black lines are contours of total water
condensate of 0.4 g/kg at a height of 1.5 km, representing low-level clouds.

must be transported to the dry regions and radiated out to space (Wing et al.,
2017; Yang and Tan, 2020). On the other hand, in SAM cloud ice decreases
throughout the whole domain. This is probably due to the large warming of the
whole troposphere, which decreases the amount of cloud ice while increasing
the amount of cloud water. Figure 3.10g shows a drastic increase of low-level
cloud fraction and qc in SAM, reaching an equilibrium value of 0.04 g/kg after
aggregation.

The correspondent radiative forcing in SAM is a pronounced cooling at 2 km
of almost -4 K/day. This marked cooling is absent in ARPS simulation because
low clouds are too few and the cloud water is low. Therefore at intermediate
and final stages, in SAM, the main differential radiative heating rate is observed
at low-level and it is generated by a strong cooling at the top of low-level clouds
in the driest regions (see Figure 3.12d and Figure 3.12f).
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3.4.3.Convective organization feedback
Another signature that characterizes convective organization in both models is
the increase of the spatial variance of the vertically integrated Frozen Moist
Static Energy (FMSE) (see Figure 3.14a). This increase is exponential in the
early stages of the simulations, however, it presents different time scales of
aggregation and different magnitudes. ARPS reaches a steady state after 40
days with an increase that is almost one order of magnitude lower than SAM. In
SAM the organization process is slower, reaching its steady state after 60 days.
In order to quantify the feedback mechanisms leading to such an increase, we
computed the budget of the vertically integrated FMSE, following Wing and
Emanuel (2014). The FMSE, h, is conserved during moist adiabatic processes
and is given by:

h = cpT + gz + Lvqv − Lfqi (3.1)

Where cP is the specific heat of dry air, T is the air temperature, g is gravi-
tational acceleration, z is the height above the surface, Lv is the latent heat
of vaporization, qv is the specific humidity with respect to water vapor, Lf is
the latent heat of fusion, and qi is the specific humidity with respect to ice
condensates. The budget equation for the mass-weighted vertical integral of h,
ĥ, is:

∂ĥ

∂t
= THF +RAD −∇h · −̂→u h (3.2)

where THF is the total surface heat flux (the sum of the latent and the sensible

heat flux), RAD is the column-integrated net radiative heating, and ∇h · −̂→u h is
the horizontal divergence of the vertically integrated flux of h. For a quantity
x, we denote “x̂” as its density-weighted vertical integral

∫ ztop
0 xρdz.

The horizontal domain mean of x is instead denoted as {x} and the anomaly as
x’. Following (Wing and Emanuel, 2014) to get to their Eq. (9), the horizontal
mean of Eq. (3.2) is subtracted from the total budget and multiplied by ĥ′ to
get the budget for the horizontal spatial variance of ĥ:

1

2

∂ĥ′2

∂t
= THF ′ĥ′ +RAD′ĥ′ − ĥ′∇h · −̂→u h (3.3)

The terms on the right-hand side of Eq. (3.3) are the spatial covariances be-
tween ĥ and the budget terms of Eq. (3.2). The last term, due to advective
processes or convergence of h, is computed as a residual from the remaining
budget, as in Wing and Emanuel (2014). The analysis of these covariance
terms determines how each process of the FMSE budget equation contributes
to the observed changes of the FMSE variance, ĥ′2, hence to changes in the
convective organization inside the models. All the budget terms are computed
as six-hourly mean fields, with the convergence term computed as a residual,
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then the daily and domain mean is computed and it is normalized by the factor
{ĥ′2}. The outcome of this process for both models is shown in Figure 3.14b
for ARPS and Figure 3.14c for SAM.
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Fig. 3.14: a) Time evolution of the 6-hourly domain mean spatial variance of the
vertical-integrated Frozen Moist Static Energy (FMSE) (J2/m4) for SAM in black
and for ARPS in red. b) and c) Time evolution of the domain mean terms in the
FMSE budget, each normalized by {h′2}, with units of day−1, for ARPS and SAM,
respectively. The terms of the budget are the sum of all diabatic correlation terms
(black), the sum of the longwave and shortwave fluxes correlation (red), the surface
enthalpy flux correlation (green), and the horizontal convergence of flux of FMSE
(pink dashed). A 5-day running average is applied to the horizontal convergence term
to provide a smoothed version (solid pink). The black dashed line is the zero line,
plotted as a reference.

In SAM for the first 40 days, the total diabatic term is positive, with both sur-
face fluxes (latent and sensible) and radiative fluxes (shortwave and longwave)
contributing to the increase of ĥ′2, thus to the organization. The convergence
term, instead, is negative, representing negative feedback on the organization.
After the 40th day, the convergence term becomes positive, acting as the main
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source of organization maintenance, when the total diabatic term tends toward
zero. The convergence term is related to what is found in Muller and Held
(2012), a mesoscale circulation that transports moist static energy up-gradient.
At later stages of the simulation, the convective organization is maintained by
the radiative heating feedback. These results resemble the one obtained for
SAM by Wing and Emanuel (2014).

However, the same can not be said for ARPS. Indeed, in ARPS the total di-
abatic term is always highly positive, with the total radiative heating being
dominant on the surface fluxes. The convergence term is always negative. This
means that while radiative feedback help increases ĥ′2, the convergence term is
always acting as damping on the convective organization. Interestingly, these
results point out that ARPS behaves differently than SAM. Similar results were
obtained in Wing and Cronin (2016) in their colder long channel simulations,
where the bulk circulation never transports moist static energy up-gradient and
the radiative feedback are helping maintain organization.

The radiative feedback which initially helps convective aggregation in SAM in-
volves especially low clouds, while in ARPS is due to the presence of high clouds,
as pointed out in the previous Section. In SAM the radiative feedback, pre-
dominant at the beginning of the simulation, is firstly due to higher longwave
cooling in the dry regions compared to the moist regions, and only secondly
by the shortwave heating in the moist regions compared to the dry regions.
This is similar to what is found in Wing and Emanuel (2014). After the initial
stages of simulation, the longwave radiation exerts an indirect feedback, where
the longwave cooling in dry regions generates a shallow circulation between
dry and moist regions (positive convergence term, pink line in Figure 3.14c).
In ARPS instead, the initial presence of a deck of high clouds exerts positive
longwave feedback, primarily because the column longwave cooling is strongly
reduced by the longwave opacity and low temperature of high clouds (Wing
et al., 2017), as demonstrated by Wing and Cronin (2016). This is inferred,
by Figure 3.12a for ARPS differential cooling in the inter-quartile range. This
feedback is maintained throughout the whole simulation (see Figure 3.12 at
later stages in ARPS).

Regarding surface fluxes, in SAM the feedback is stronger than in ARPS (Figure
3.14), and it is comparable in magnitude to the effect of radiative feedback.
For both models the surface fluxes are positively contributing to the organiza-
tion at early stages, moistening the moist regions. At later stages in SAM, the
feedback becomes negative, due to air-sea enthalpy disequilibrium (Wing and
Emanuel, 2014), while in ARPS it remains weakly positive.

The mesoscale circulation that develops with the organization in SAM can be

72



Chapter 3. Convective Organization in Cloud Resolving Models

visualized using the stream function Ψ (Bretherton et al., 2005), derived as
the horizontal integral over vertical velocity starting from the driest column to
the moistest, after having sorted them from lowest to highest CRH. The same
sorting described in the previous section 3.1 is applied here, but in this case, it
is done based on the CRH. By looking at the advective tendencies of MSE, im-
plied by the stream function, one can capture the general mechanism of energy
exchange between the columns.

In SAM, the MSE “circulation” occurs between the moist and dry columns only
after the 40th day as underlined by the ĥ′2 budget in Figure 3.14. By day 50,
SAM is attaining a state of convective organization. An up-gradient transport
of MSE is implied by Figure 3.15b, with the low MSE being accumulated in the
dry columns. There is a low-level circulation in SAM, which transports low-level
high MSE air into the moist regions (at around 1 km), and mid-level low MSE
air into the dry region (at around 2 km). This results in a net reduction of
MSE in the dry regions, and an increase of MSE in the moist regions, thereby
enhancing the gradient of ĥ. This happens in correspondence with the presence
of a deck of low clouds (Figure 3.15b) in dry regions, as already pointed out in
the previous Section. This is also visible in Figure 3.15b where the low clouds in
SAM reach more than half of the sorted block throughout the whole simulation
(Figure 3.16).
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Fig. 3.15: The average value of the MSE “circulation” between 50-55 days for ARPS
(a) and SAM (b), with columns ranked by Column Relative Humidity (CRH), from
driest to moistest. Black contours show the stream function Ψ (contour interval 0.05 kg
m−2s−1, starting at 0.01 kg m−2s−1, solid for positive values and dashed for negative
values ) as a function of CRH and height. White contours show cloud condensate
(cloud ice and cloud water) qN = qi + qc (contour interval 0.005 g/kg, starting at
0.001 mg/kg). Shaded contours represent MSE.
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In ARPS, on the other hand, the “circulation” of MSE is not as strong and
bottom-heavy as the one in SAM, both in the days before the organization
(as shown in Figure 3.16b) or once the simulation has reached the organized
equilibrium (as shown in Figure 3.16d). Therefore, Figure 3.15a suggests that
the low-level circulation of MSE, which leads to the organization in the SAM
model, is absent in the ARPS model. As mentioned above, the ĥ′2 budget
demonstrates that the convergence term is always damping the organization.
This is also visible from the CRH sorted mass flux (taken as M = ρw) of ARPS
(Figure 3.18d and Figure 3.18f), where the updrafts in the moist regions, reach
their maximum below 8 km, and not at low level, as for the SAM model.

The absence of low clouds in ARPS correlates with the absence of low-level
cooling in dry regions, which can be seen in the radiative heating quartiles (Fig-
ure 3.12). Muller and Bony (2015) pointed out that the vertical structure of
the radiative cooling/heating is relevant to the convective organization since
it determines the strength and height of the low-level circulation and hence
the associated MSE transport. Since the main differential radiative heating in
ARPS is found at a high level, this points out that the organization is primarily
due to the high cloud radiative effects, as also demonstrated by Coppin and
Bony (2015). The fact that the low-level circulation never appears in ARPS is
also demonstrated by looking at the bottom layer wind speed at the boundary
between the moist and the dry regions (see Figure 3.17). While in SAM such
velocity increases (which is a clear signal of a radiatively driven aggregation as
shown by Windmiller and Craig (2019), see their Figure 8), in ARPS it remains
almost constant.

While the thicker layer of anvil clouds and the absence of low-level cloud can
explain the different radiative feedback triggering organization, they can not
explain why ARPS presents a faster aggregation process compared to SAM, as
clearly seen from the increase of ĥ′2 (Figure 3.14a). In the literature, (Jee-
vanjee and Romps, 2013; Muller and Bony, 2015; Holloway and Woolnough,
2016), a faster aggregation is usually found by suppressing rain evaporation
and therefore by weakening evaporation-driven downdraft and cold pools. This
feature, which is not realistic in standard conditions, may occur when the sub-
cloud layer is nearly saturated and rain cannot evaporate (Wing et al., 2017).
Cold pools slow down the organization process by increasing low-level mixing
between moist and dry regions (Jeevanjee and Romps, 2013), killing convective
cells within a few hours (Muller and Bony, 2015). As a consequence, when
cold pools are weaker, even in the absence of radiative feedback, convection
remains active in the same moist regions throughout the simulation, giving rise
to a “moisture-memory aggregation”.

The low-level mixing by cold pools is evident in SAM since the beginning of the
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Fig. 3.16: The average value of the MSE circulation between 20-25 days for SAM (a)
and ARPS (b) and between 115-120 days for SAM (c) and ARPS (d), with columns
ranked by Column Relative Humidity (CRH), from driest to moistest. Black contours
show the stream function Ψ (contour interval 0.05 kg m−2s−1, starting at 0.01 kg
m−2s−1, solid for positive values and dashed for negative values ) as a function of
CRH and height. White contours show cloud condensate (cloud ice and cloud water)
qN = qi+ qc (contour interval 0.005 g/kg, starting at 0.001 mg/kg). Shaded contours
represent the FMSE.

simulation and up to 30 days: Figure 3.16a shows the presence of a circulation
in the sub-cloud layer (below 1 km) which acts to transport MSE from moist
regions to dry regions, therefore slowing down the aggregation process. Such
boundary layer moistening in the dry regions is also confirmed by the negative
domain-average mass flux in the moist regions below 1 km (see Figure 3.18a).
The same cannot be said for ARPS, where these signs of boundary layer moist-
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Fig. 3.17: Time evolution of bottom layer horizontal wind speed (Uh) averaged over
the boundary between moist and dry patch (identified with the same criterion as in
Figure 3.3).

ening in the dry regions never appear. The absence of these features must be
found in the different saturation of the sub-cloud layer. Figures 3.19a and 3.19b
show that ARPS has a saturated sub-cloud layer both at the intermediate stages
(not shown) and at the end (Figure 3.19a) of the simulation. Instead, SAM
never reaches such a condition (Figure 3.19b). The saturation of the sub-cloud
layer in ARPS directly influences the downdrafts properties: ARPS downdrafts
are weaker than those in SAM and they cover a smaller fraction of the domain
(see Figure 3.20).

It is underlined here that, the sign of the localized convective activity in ARPS,
mentioned in previous sections, corresponds to the lack of the creation at the
surface of the radiatively-driven cold pool as in SAM and to the presence of
many dry patches, reaching a maximum extension when the sub-cloud layer is
fully saturated (see the behavior of the driest quartile of ARPS in Figure 3.7a
in comparison with Figure 3.14b at day 35).

Another signature of the role of moisture-convection feedback in ARPS is visible
in the strong positive humidity anomalies which develop in the moist regions
(Figure 3.21a). Such anomaly is always present, from the beginning to the final
stages of the simulation (see Figure 3.22b, 3.22d and 3.22f). In SAM, instead,
at the beginning of the simulation, only negative anomalies are present outside
the boundary layer, demonstrating that the main feedback occurs in the driest
regions of the domain. Positive anomalies are present only inside the boundary
layer of dry regions at the initial stages (Figure 3.22a), while they develop in
moist regions, only at later stages (see Figure 3.22c and 3.22e).
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Fig. 3.18: Average values of the CRH blocks-quartiles binned of the mass-weighted
vertical velocity between the 20th and 25th day for SAM (a) and ARPS (b), between
the 50th and 55th day for SAM (c) and ARPS (d) and between the 115th and 120th
day for SAM (e) and ARPS (f).

The absence of a low-level circulation in ARPS, which exports high-MSE from
dry regions to moist regions, prevents the formation of extremely dry regions
as in SAM.
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Fig. 3.19: Vertical profiles of ARPS saturation water vapor mixing ratio (qsat) and
water vapor mixing ratio (qv) over cloudy grid points (defined as grid points at 1.5 km
height where the total cloud water condensate exceeded 10−3 g/kg) between days 115
and 120 a); b) same as a) but for SAM simulation.
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Fig. 3.20: Vertical profiles of domain area fraction covered by downdrafts (a); down-
drafts core velocity (b). Thick lines denote the initial state (5-10 days average), while
thin lines denote the aggregated state (115-120) days average). Continuous lines are
SAM simulations, while dashed lines are ARPS simulations. Downdrafts cores are taken
as grid points where the vertical velocity is less than -1 m/s.

3.5.Discussion
In general, cold pool acts to disperse convection (Zuidema et al., 2017). A
saturated sub-cloud layer causes less rain evaporation, weaker downdrafts, and
weaker cold pools (Wing et al., 2017). Weaker cold pools decrease the low-
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Fig. 3.21: Specific humidity (qv) anomaly from the initial day of simulation (qv0) in
ARPS (a) and in SAM (b) between the 20th and the 25th day of the simulation, with
columns ranked by Column Relative Humidity (CRH), from driest to moistest. Black
contours show the stream function Ψ (contour interval 0.05 kg m−2s−1, starting at
0.01 kg m−2s−1, solid for positive values and dashed for negative values ) as a function
of CRH and height.

level mixing between moist convective regions and dry regions (Jeevanjee and
Romps, 2013). This low-level mixing is important for the moistening of the
boundary layer and for the triggering of new convection in dry regions, where
radiative subsidence is predominant. This first cold pool effect can be regarded
as a negative moisture feedback to convective organization, since it produces
a down-gradient transport of moisture in dry regions, therefore slowing down
convective aggregation. However, if cold pools (in moist regions) and radia-
tive subsidence (in dry regions) are strong enough to generate low clouds at
the boundary between moist and dry regions (Tompkins, 2001a), then an up-
gradient low-level transport of MSE from dry regions to moist regions develop by
an indirect positive longwave feedback (Muller and Held, 2012). This circulation
enforces the already existent radiative subsidence. Therefore, as a secondary
effect, evaporatively-driven cold pools can help the expansion of radiatively-
driven cold pools (”dry pools”) by triggering low clouds in dry regions.

Such competing effects of moisture and radiative feedback are clearly visible
in the SAM model in the early stages of aggregation (Figure 3.23b). The up-
gradient transport, then amplifies the already existent direct diabatic longwave
feedback (Wing et al., 2017), helping to maintain convective organization. In-
stead, in ARPS, the higher saturation of the sub-cloud layer weakens the cold
pool effect and, as a consequence, this low-level mixing is weaker. Therefore,
this produces a circulation of dry air from dry regions to moist regions, driven
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Fig. 3.22: Specific humidity (qv) anomaly from the initial day of simulation (qv0) in
SAM and in in ARPS between the 10th and the 15th day (SAM in (a) and ARPS in
(b)), between the 50th and the 55th day of simulation (SAM in (c) and ARPS in (d))
and between the 115th and the 120th day (SAM in (e) and ARPS in (f)), with columns
ranked by Column Relative Humidity (CRH), from driest to moistest. Black contours
show the stream function Ψ (contour interval 0.05 kg m−2s−1, starting at 0.01 kg
m−2s−1, solid for positive values and dashed for negative values ) as a function of
CRH and height.

by the presence of a direct diabatic longwave feedback, which is stronger com-
pared with that of SAM also due to the presence of a high anvil cloud fraction.
This is shown in the early stages of ARPS simulation (Figure 3.23a).

In SAM, while cold pools in the moist regions tend to disperse convection, dry
regions start to expand due to a positive indirect longwave feedback (longwave
cooling in dry regions drives a shallow circulation between the dry and moist
regions and this circulation transports MSE up-gradient (Wing et al., 2017))
which is sustained by low clouds. The MSE export from the moist boundary
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layer in the dry region causes strong drying and further increase of outgoing
longwave radiation (Figure 3.23d for SAM at intermediate stages). Therefore,
dry regions expand until the point in which they lose all their water vapor (also
visible in the qv anomaly plot at later stages of the simulation in Figures 3.22c
and 3.22e). Dry regions expansion seclude all moist convection in a single re-
gion since evaporatively-driven cold pools are not strong enough to counteract
the radiatively-driven cold pool once it has strengthened.

However, when ARPS reaches saturation and evaporatively driven downdraft
and cold pools are switched off, there are no mechanisms counteracting the
high-cloud diabatic longwave direct feedback, which is driving convective ag-
gregation (Figure 3.14a). Indeed, the ARPS model needs several time-steps to
produce ice and deep convection throughout the whole domain. Therefore, the
strongest longwave direct feedback is reached when the cloud ice has reached
its maximum. The radiative feedback and the entire ĥ′2 budget for ARPS found
here is very similar to the findings of Yang and Tan (2020) for the WRF model.
They found a larger positive contribution from the longwave radiation term
than that found for SAM in Wing and Emanuel (2014). There, similarly to
our result, they also found an initial increase (before 10 days) in the longwave
radiative feedback. Instead, SAM already starts with the presence of cloud ice
and deep convection throughout the whole domain due to its diagnostic micro-
physics, but the increase in the longwave feedback is counteracted and reduced
(as shown in 3.14a) by the beginning of cold pool activity and low-level mixing
which acts to moisten dry regions. This explains the behavior of the ĥ′2 budget
in SAM, where the initial radiative feedback and surface fluxes feedback start
decreasing at the expense of the convergence feedback term. In ARPS, instead,
cold pools are weaker and they can not generate low-level clouds inside the dry
region. Therefore, the enhancement of the low-level longwave feedback and the
consequent expansion of the dry region to form a larger radiatively driven cold
pool, can not happen. After 30 days of simulation cold pool effect weakens, and
the high-cloud radiative feedback dominates the maintenance of the convective
organization.

These findings are in line with what was found in the literature. Yanase et al.
(2020) found a competing effect between a positive feedback induced by radia-
tive cooling in the subsidence region and a negative feedback involving cold pool
spreading over the preceding subsidence area and homogenizing the boundary
layer moisture (see their Figure 4). This is induced by the evaporative cooling
of falling rain in the convective region. Indeed, Khairoutdinov et al. (2009)
showed that removing the evaporation of rain in their simulation (thus weak-
ening cold pools), also results in a lower shallow cloud fraction covering the
domain. In this case, new deep clouds were found to develop at the sites of
previous deep clouds, resembling the “moisture-memory aggregation”. When
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a) ARPS initial stage

c) ARPS intermediate stage d) SAM intermediate stage

b) SAM initial stage

Fig. 3.23: Schematic illustration of the mechanisms proposed for self-aggregation in
the two models. Red wavy arrows indicate outgoing longwave radiation; red shading
indicates radiatively-driven cold pools generated in the drier zones; blue shading in-
dicates evaporatively-driven cold pools generated in the moister zones; black arrows
indicate low-level mixing; red and blue arrows indicate the predominant sense of MSE
circulation. In ARPS between 5 and 30 days, at the initial stage (a), the creation of a
larger anvil and the presence of many dry regions causes a strong differential heating
between moist and dry zones (direct longwave feedback). The weaker cold pools are
not able to transport moisture inside the dry regions, to moisten the boundary layer by
low-level mixing, and to create shallow clouds in the dry regions. Instead, this happens
in SAM at the initial stage, until day 30 (b), where dry patches start to expand due
to the enhancement of radiative cooling by shallow clouds. At intermediate stages in
ARPS, between 30 and 40 days (c), due to the weaker low-level mixing of the boundary
layer, moist zones get saturated and evaporatively-driven cold pools are switched off.
At this point, the direct longwave feedback maintains the moist region moister and
the dry regions drier. In SAM, at the intermediate stage, between 40 and 60 days (d),
when radiatively-driven cold pools have become strong enough to invert the low-level
circulation created by evaporatively-driven cold pools, the high MSE which were stored
at the boundary of the dry region by low-level mixing, starts to be transported into
the moist regions, causing them to get moister (after day 60). Such up-gradient MSE
circulation ends when the driest region has lost all its water vapor, therefore preventing
any further expansion of dry regions. From this point forward (after day 70), the ex-
pansion (contraction) of moist regions alternates with the contraction (expansion) of
dry regions due to competition between radiative and evaporatively-driven cold pools.
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rain evaporation was present, deep clouds tended to appear along the edges of
spreading cold pools, favoring also the formation of shallow clouds. Therefore,
the convective organization can occur even with a low amount of shallow clouds
and weak MSE circulation, once it is ensured that the sub-cloud layer is enough
saturated to weaken downdrafts (Wing et al., 2017).

Different sub-cloud layer properties can arise spontaneously from different mod-
els even when starting from a similar setting as in the RCEMIP project (Wing
et al., 2018). Indeed, Wing et al. (2020) found a substantial spread in the
domain average temperature and humidity profiles after reaching equilibrium.
Another signal of a weaker cold pool effect is the weaker surface fluxes in ARPS,
compared to those in SAM (see Table 3.2). As shown by Tompkins (2001a);
Schlemmer and Hohenegger (2014); Drager and van den Heever (2017), the
gusty wind brought by cold pools generally enhances surface fluxes.

Differences in the way the convective organization is achieved in CRM, by using
other models than SAM, have been noticed in previous studies (Jeevanjee and
Romps, 2013; Yang and Tan, 2020; Tompkins and Semie, 2017; Holloway and
Woolnough, 2016). For example, Holloway and Woolnough (2016) found that
a low-level circulation was present in the Met Office Unified Model, but was
driven mainly by anomalies in low-level diabatic heating from convection and
other microphysical processes, and not by radiative cooling gradients between
the moist and dry regions. Furthermore, they found that this was not crucial in
organizing convection. Similarly, this has been found by Yang and Tan (2020)
with WRF. For them, the expansion of dry areas was due to the dry-subsidence
feedback. Tompkins and Semie (2017), using WRF, found that water vapor
feedback with convection is a necessary but not sufficient condition for convec-
tive aggregation, similar to what is found here.

One could ask why in the ARPS model the sub-cloud layer is saturated. First of
all, the ARPS and SAM models reach their equilibrium in very different ways.
In particular, the small domain simulation of ARPS is entirely covered by a large
anvil (Figure 3.2) when reaching its equilibrium. Such an anvil blocks incom-
ing radiation and the simulation domain starts to get colder and drier with a
high precipitation rate. When initializing the new large simulation, the cloud
water and ice at 12 km are removed, removing the large anvil, while leaving
its effect on the vertical profile of temperature and water vapor. Therefore, an
aggregated state is obtained, but this occurs in a drier and colder domain, with
a nearly saturated sub-cloud layer.

The usually adopted procedure of initialization by a small domain (see RCEMIP
protocol (Wing et al., 2018)), is thought to eliminate a long spin-up period to
reach the model’s RCE state without large adjustments (Wing et al., 2018).
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However, such a procedure could be affected by the presence of a large optically
thin clouds anvil, which will dry and cool the whole domain. Such presence is
evident also in other models of the RCEMIP project, as shown by large cloud
fractions in Figure 9 of Wing et al. (2020). The reason behind the large anvil
cloud fraction and cloud ice in the ARPS small domain simulation was found
in cloud microphysics properties and the water species conservation process,
similar to the large domain simulation. In SAM the ice is diagnostic, while in
ARPS is prognostic. This difference is particularly important at the beginning
of the simulation, while the microphysical features become important during
the simulation, with the lower aggregation of ice to form snow and the absence
of sedimentation helping to maintain and increase anvil cloud fraction in ARPS,
compared to SAM.

The updrafts number and velocity are lower in ARPS than in SAM. They could
be diluted by the larger lateral mixing of ARPS (not shown). Following Tomp-
kins and Semie (2017) greater lateral mixing would help the convective organi-
zation. The effect of mixing will be investigated in more detail in the following.
However, we note here that an organized state in SAM is reached with a very
small lateral mixing, in contrast to what was predicted by Tompkins and Semie
(2017). SAM is likely compensating the mixing effect with numerical diffu-
sion due to the second-order accurate advection scheme (Smolarkiewicz and
Grabowski, 1990), or the radiative feedback is so strong that aggregation can
occur also in an environment where deep convection is not sensitive to entrain-
ment (as occurring in the SAM model).

Since the feedback mechanisms studied in the two models report differences in
both microphysics and moisture-convection feedback in the boundary layer, it
can be thought that the statistical difference in aggregation indexes is related to
a different dominant mode in achieving self-aggregation. Since the statistics of
the RCEMIP experiment on CRMs include these feedback, they must be taken
into account in the discussion of the existence of a relationship between the
idealized RCE experiments and the observations of tropical convection.

Comparison of the frequency distribution between a parameter such as precipi-
tation (see Bretherton et al. (2005)) and column water content (see Yano et al.
(2012)) can give insight into the observed statistics of precipitation (Peters
and Neelin, 2006; Bechtold, 2008) with respect to observations of RCE in the
tropics.

3.6.Conclusions
In this study, we performed two RCE simulations with two different CRM (SAM
and ARPS) and we compared their properties while reaching a statistical equi-
librium of precipitation. The two models reach an organized state presenting
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different warming and drying of the whole domain. In particular, a saturated
sub-cloud layer in ARPS allows the localization of convection in moist regions,
by weakening the negative influence of cold pools. Stronger cold pools in SAM,
instead, help the creation of shallow clouds in dry regions, increasing the long-
wave feedback responsible for their expansion; while delocalizing convection in
moist regions and therefore opposing high-cloud radiative feedback. We found
that negative moisture feedback leads to lower values of aggregation metrics in
ARPS compared to SAM, mainly due to the strong drying of dry regions in the
SAM model which corresponds to stronger warming and drying of the domain.

There is a chance that this is a common feature of CRMs models, where the
closer the sub-cloud layer to saturation, the lower the degree of aggregation
and the weaker the effect of the organized state on the average domain statis-
tics. Moreover, in ARPS weaker cold pools lead to fewer surface fluxes, hence
a greater imbalance between them and radiative cooling, FNET . This makes
ARPS closer to the RCE equilibrium observed in the tropics on a daily basis
(Jakob et al., 2019).

Given the criticality of precipitation and its evaporation at the resolved scales,
further experiments are needed with different microphysics and turbulence schemes
and increased resolution, in order to resolve small scales turbulence fluxes and
convective motions. Furthermore, from our results, it seems that the higher
saturation in ARPS leads to a different distribution of precipitation against to-
tal water condensate, compared to that of SAM. This underlines different ways
to reach a self-organized critical state in the two models, which are both con-
tained in the statistical oscillation of atmospheric tropical convection and could
be included in climate sensitivity studies.

85



4. Mediterranean tropical-like cy-
clones simulated by ensemble
forecasting

This chapter1 is concerned with the study of medicanes by means of ensemble
forecasting. The objectives of the work are to investigate the prediction of
medicanes intensity and tracks using a general circulation model and, compare
ensembles with the inclusion of the physics uncertainties and ensembles with
the inclusion of initial conditions uncertainty. Indeed, there are inherent limits
to the predictions of Mediterranean cyclones, and medicanes in particular, due
to the predictability of mid-latitude weather, to the multiscale nature of these
cyclones, to the contrast in the density of observations between land and sea,
and to the diverse complex orography of the region. Improving the accuracy, and
reliability of forecasts for these cyclones is a complex task that requires advances
in both large and convective-scale initial condition uncertainty representations.
Thus, a comparison between three ensemble forecast experiments is set up
with the use of the ECMWF Integrated Forecasting System, IFS, ensemble
forecasting system. One ensemble is run with only initial condition perturbation
(Ensemble Data Assimilation, EDA), one is run with the perturbation of physical
parameterizations and one is run with only the convective parameterization

1This chapter covers the research carried out in collaboration with ECMWF. It focuses
on the analysis of ensemble forecasting applied to Mediterranean tropical-like cyclones. It
is concerned with assessing the differences between the types of uncertainty included in the
ensemble, the initial conditions one or the physical parameterization one, and their impact on
the characteristics of these cyclones.
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perturbations. The physical parameterization perturbation has been carried out
by means of Stochastically Perturbed Parameterizations (SPP), a novel but
promising scheme developed at ECMWF. The study is carried out for three
medicanes, among the strongest in recent years: Ianos, Zorbas, and Trixie. It
was generally found that the forecasts accurately reproduced both the thermal
structure and symmetry of the cyclones, compared to the analysis value. It was
also found that the use of SPP, and specifically, the perturbation of convective
parameters, improves the forecast, in terms of tracking spread and precipitation
intensity (based on statistical scores). Finally, it was verified that among the
three medicanes, the best predicted is Ianos. Given, that the ECMWF ensemble
forecasts model with high resolution can adequately reproduce medicanes with
their tropical-like features, these results pose the basis for investigating the
physical mechanism behind these results, especially regarding the deepening of
the cyclone, its tracking, and its transition to the tropical phase.

4.1.Introduction
The Mediterranean region is a small but geographically complex area character-
ized by sharp land and sea transitions and surrounded by high mountain ranges.
It is known for its frequent cyclogenesis. A small number of the intense cyclones
that originate in the region present tropical-like features (Flaounas et al., 2022).
They are a very significant phenomenon, due to their similarity with tropical cy-
clones, and while they are typically shorter-lived than North Atlantic hurricanes,
they may exhibit several tropical-like characteristics in their mature phase, such
as a high degree of axial symmetry, a warm core, a tendency to weaken after
making landfall, and a cloud-free ”eye” at the center of the storm of mostly
calm weather, as inferred from satellite images. Such vortices are better known
as Tropical-Like Cyclones or Mediterranean hurricanes (medicanes). Medicanes
have been documented in the Mediterranean region since the beginning of the
satellite era (Ernst and Matson, 1983) and have been associated with polar
lows (Rasmussen and Zick, 1987). These storms pose a significant threat due
to their intense winds, heavy rainfall, and associated flooding.

Medicanes features have been commonly observed in the literature (Cavicchia
et al., 2014; Romero and Emanuel, 2013; Emanuel, 2005; Zhang et al., 2019c;
Miglietta and Rotunno, 2019). They occur very infrequently, with an average
of about 1/2 events per year over the entire Mediterranean region. They are
most commonly formed in the western Mediterranean and in the area between
the Ionian Sea and the North African coast. Medicanes have a distinct seasonal
pattern, with a peak at the start of winter, a significant number of events during
fall, a few during spring, and very little activity in summer. As pointed out by
Miglietta and Rotunno (2019) they only have a lifespan of a few days due to
the limited size of the Mediterranean Sea, which is their main source of energy.
Furthermore, they only exhibit fully tropical characteristics for a short period,
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with extratropical features predominating for most of their lifetime (Miglietta
and Rotunno, 2019).

Medicanes differ from other Mediterranean cyclones in the complexity of their
formation and maintenance. Indeed, unlike hurricanes, which develop in re-
gions with near-zero baroclinicity and draw their energy from warm tropical
oceans, medicanes form from pressure lows under moderate to strong baroclin-
icity, which is a typical condition of midlatitudes. The latter aspect leads to a
low rate of occurrence, given that the environmental conditions of weak verti-
cal wind shear, which are necessary for their development, are unusual (Nastos
et al., 2018). The interaction between warm sea and cold air associated with
a deep upper-level trough creates the necessary thermodynamic disequilibrium
for these storms to develop a warm core (Emanuel, 2005; Miglietta and Ro-
tunno, 2019). The type of mechanics that can be deemed responsible for the
creation of a medicane in the Mediterranean is similar to the one responsible
for the formation of tropical cyclones farther from the equator near the tropics
(McTaggart-Cowan et al., 2015).

The development and maintenance of medicanes are the results of a synergy be-
tween synoptic-scale processes, which provide the necessary environment, and
mesoscale processes such as deep convection and latent heat fluxes from the
sea (Emanuel, 2005). Because of their small size, limited data availability, low
frequency of occurrence (Cavicchia et al., 2014), and the complex geography
of the Mediterranean region, studying and predicting medicanes is a challenge
for numerical weather forecasting. For this reason, besides some climatological
studies on medicanes, using synthetic production of tracks and 3D numerical
simulation (Romero and Emanuel, 2013; Cavicchia et al., 2014) there is a higher
rate of studies in the literature that has been focused on modeling medicanes
using convective permitting models, due to the fact that they can be more
effective at reproducing the small-scale processes that contribute to medicane
formation and maintenance (Davolio et al., 2009; Miglietta et al., 2011, 2013;
Mazza et al., 2017; Cioni et al., 2016; Ricchi et al., 2019) rather than observa-
tional aspects (Pytharoulis et al., 2000; Moscatello et al., 2008).

There have been relatively few studies that have analyzed medicanes using
ensemble forecasts (Chaboureau et al., 2012; Mazza et al., 2017) and more
specifically, by using the ECMWF ensemble forecasting system (Pantillon et al.,
2013; Di Muzio et al., 2019; Portmann et al., 2020). Indeed, the ensemble fore-
cast of ECMWF has proven to be a useful tool for predicting extreme weather
events (Buizza and Hollingsworth, 2002; Buizza, 2008; Magnusson et al., 2015),
for analyzing tropical cyclones (Torn and Cook, 2013) and their predictability
(Munsell et al., 2013). Moreover, the model has demonstrated high predic-
tive skill also for medicanes (Di Muzio et al., 2019). Pantillon et al. (2013)
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used ECMWF operational ensemble forecasts to study the predictability of a
medicane in 2006 and found that they were more successful at consistently
capturing early signals of its occurrence compared to ECMWF deterministic
forecasts. Di Muzio et al. (2019), who used ECMWF ensemble forecasts to
systematically analyze the predictability of medicanes, found that the ensemble
members noted a marked drop in predictive skill beyond 5-7 lead days, indi-
cating the existence of predictability barriers. Portmann et al. (2020) used
ensemble forecasting to assess upstream uncertainties in the prediction of med-
icanes, finding also that the uncertainties were reduced with later initializations.

Research conducted on medicanes with ensemble forecasting has generally been
carried out through the use of the perturbations to initial conditions only
(Di Muzio et al., 2019; Portmann et al., 2020). However, an important part of
the uncertainty associated with forecasting comes from uncertainty related to
the physics of the model. For these reasons, this present study is concerned with
ensemble forecasting that takes into account not only the uncertainty of initial
conditions but also the uncertainty of model parameters. We present an assess-
ment of the prediction of medicanes, with the use, not only of the Integrated
Forecasting System (IFS) operational ensemble forecasting system at ECMWF,
with initial conditions perturbation, but using also the physical parameterization
perturbations, the Stochastically Perturbed Parameterizations (SPP) ensemble
forecast. Indeed, this is a novel scheme of stochastic representation of model
uncertainties which is still under development at ECMWF in order to replace the
Stochastically Perturbed Parameterization Tendency scheme (SPPT) (Palmer
et al., 2009). SPP has been found relevant in improving forecasts, specifically
with ECMWF ensembles (Ollinaho et al., 2017a) and tropical cyclones. This
new representation of uncertainties associated with model physics consists of a
set of physical parameters in the model being perturbed (Ollinaho et al., 2017b).
The use of this method is rising in the literature (Frogner et al., 2022) precisely
because it allows the reproduction of uncertainty close to the actual source of
error and maintains physical consistency, particularly with local conservation of
energy and humidity (Lang et al., 2021).

Thus a comparison between three ensemble forecast experiments is set up. One
ensemble is run with only initial condition perturbations, through the Ensemble
Data Assimilation (EDA), one is run with the entire physical parameterizations
perturbed and one is run with only the convective parameterization perturbed.
The goal of this study is to determine whether these forecasts can accurately
predict medicanes and if there are possible biases presented by the ensemble
forecasts. The goal of the research is also to assess which of the perturba-
tion experiments can capture the medicane more accurately. Differently from
(Di Muzio et al., 2019), only three medicanes, among the strongest in recent
years, were chosen: Ianos (September 15-20, 2020), Zorbas (September 27-31,
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2018), and Trixie (October 28-November 1, 2016). The three medicanes have
been selected because they are very different from each other, with Trixie being
the weakest but also the longest lasting of the three (Di Muzio et al., 2019) and
generally among the longest lasting medicanes, Zorbas one of the shortest-lived
and presenting high variability in predictability, as documented by (Portmann
et al., 2020) and Ianos one of the most intense medicanes ever observed, reach-
ing category 2 hurricane status (Lagouvardos et al., 2022).

In section 4.2 the data and methods used are described, with an in-depth de-
scription of the ensemble forecast experiments carried out, a description of
the SPP, and of the tracking method. In section 4.3 a brief overview of the
three storms studied is provided, highlighting their important characteristics. In
section 4.4 the results are presented for the track position and intensity, precip-
itation, and thermal structure. In the final section 4.5, the results are discussed
and the concluding remarks are given.

4.2.Data and Methods
In this section, a description of the methods and techniques used to analyze
the medicanes with the ensemble forecast and the operational analysis with
the ECMWF model Integrated Forecasting System (IFS), is given. Firstly, a de-
scription of the Stochastically Perturbed Parameterizations ensemble forecast of
IFS is provided, together with a brief description of the carried-out perturbation
experiments. Secondly, the data, used to validate the simulation besides the
operational analysis, are described. Finally, the tracking algorithm is described.

4.2.1.Ensemble Forecast Simulation
For this work, the ensemble forecast experiments with the ECMWF IFS (Cycle
47r3: ECMWF,(IFS Documentation CY47R3, 2021b)) and the ECMWF opera-
tional analysis have been used. Both the ensemble forecast and the operational
analysis have a ≃ 9 km horizontal grid spacing (TCo1279, for a more in-depth
description of the horizontal grid, see Malardel et al. (2016)) and are run with
137 vertical levels. The forecasted period used in this work is 9 days. Three
different sets of experiments have been conducted, all of them consisting of an
8-members ensemble. The ensemble forecasts are initialized, amounting to 3
initial dates, each day at 0000 UTC. For Ianos the three dates are the 15th,
the 16th, and the 17th of September 2020, for Zorbas the three dates are the
25th, the 26th, and the 27th of September 2018 and for Trixie the three dates
are the 25th, the 26th, and the 27th of October 2016. Regarding the physical
parameterization, a detailed description can be found in the IFS documentation
(IFS Documentation CY47R3, 2021a). The ensemble forecasts are coupled to
the ECMWF Wave Model (ecWAM:(IFS Documentation CY47R3, 2021c)), to
the Nucleus for European Modelling of the Ocean (NEMO) ocean model (Mo-
gensen et al., 2012) and the LIM2 sea-ice model (Goosse and Fichefet, 1999).
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The Different types of experiments that have been carried out are reported in
Table 4.1.

Table 4.1: Description of the different ensemble forecast experiments

Experiment ID Experiment Setup

INI Initial perturbations only - no model
uncertainty representation

SPP − Conv No initial perturbations - convective
parameterization uncertainty repre-
sentation

SPP No initial perturbations - physical
parameterizations uncertainty rep-
resentation

The first experiment is the ensemble forecast with initial condition perturbation
only (INI experiment). This is done by adding perturbation to a 4D-Var (Rabier
et al., 2000) analysis. The perturbations are constructed from an ensemble of
4D-Var data assimilations (Ensemble Data Assimilation, EDA, (Buizza et al.,
2008)). The second and third sets of experiments are conducted by running the
ensemble with SSP applied. In the former (SPP-Conv) only the convective pa-
rameterization parameters are perturbed. In the latter (SPP), the whole physics
parameterization, convection, radiation, clouds and large-scale precipitation and
turbulence diffusion and sub-grid orography parameters are perturbed, as dis-
cussed below.

4.2.2.Stochastically Perturbed Parameterizations Ensemble
The Stochastically Perturbed Parameterizations scheme represents model un-
certainty in numerical weather prediction by introducing stochastic perturba-
tions into the physical parameterization schemes (Lang et al., 2021) as men-
tioned above. SPP is a new scheme, aimed at replacing the currently used
Stochastically Perturbed Parameterization Tendency scheme (SPPT) (Palmer
et al., 2009) in the ECMWF ensemble forecast in June 2023.

One could ask why the need for a new scheme to represent model uncertainty.
The SPPT scheme randomly perturbs the net of the physical tendencies at each
time-step. The physical tendencies are defined as the amount of change of the
prognostic model variables (winds, temperature, and humidity) due to physical
parameterizations. The perturbation is produced with multiplicative noise. This
leads to greater uncertainty attributed to larger tendencies while preserving the
relative balances between the tendencies of different physical processes. How-
ever, SPPT is not able to trigger new states (for a single time-step), but it is
only able to enhance or diminish the effect of the represented physical processes,
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and it introduces inconsistency between the perturbed physics tendencies and
fluxes that are computed from the unperturbed tendencies. Since there is no
correction for the surface fluxes, after perturbing the atmospheric tendencies,
an energy imbalance is introduced into the system.

For these reasons, Ollinaho et al. (2017b) started developing a new scheme of
stochastic representation of model uncertainties, following the work of Baker
et al. (2014); Christensen et al. (2015). This new scheme of perturbation
is based on applying perturbations directly to well-known poorly constrained
parameters and variables within the parameterization schemes. This way the
model uncertainty representation can be directly related to known sources of
model uncertainties associated with specific processes. Thus, with the SPP,
some individual IFS parameters and variables are perturbed at each time-step
with in-space varying noise derived from in-time evolving 2D random number
fields. The SPP scheme is designed such that it converges to the unperturbed
(i.e. deterministic) forecast model in the limit of vanishing variance of the noise.

Perturbed parameters
The implementation of SPP allows simultaneous perturbations of up to 27 pa-
rameters and variables in the deterministic IFS parametrizations of (a) turbulent
diffusion (Köhler et al., 2011), subgrid orography (Beljaars et al., 2004), con-
vection (Tiedtke, 1989; Bechtold et al., 2008), cloud processes and large-scale
precipitation (Tiedtke, 1993; Forbes et al., 2011), and radiation (ecRad, (Hogan
and Bozzo, 2018)). These 27 parameters and variables are reported in Tables
4.2 - 4.5.

Regarding the boundary layer processes, one of the most important aspects
is the turbulent transfer, with which the atmospheric model knows about the
surface boundary condition. Land surfaces tend to be heterogeneous and it
is very difficult to characterize real terrain in terms of the surface drag that
it exerts on the flow, especially in areas with orography. Usually, the Monin
Obukhov Similarity is used, which, however, applies to stationary homogeneous
conditions. Furthermore, there is much uncertainty regarding the interaction
between turbulence and ocean waves. Given that and the fact that the atmo-
spheric circulation is sensitive to surface drag (Sandu et al., 2016), the chosen
parameters of the scheme to be perturbed are related to the surface drag and
the sub-grid orography scheme. Furthermore, the von Kármán constant is per-
turbed, because several uncertain quantities in the turbulent diffusion scheme
are proportional to the von Kármán constant. These are the standard deviation
of vertical velocity, which is estimated via an empirical formula, the Obukhov
length used to compute the stability functions in the outer layer for surface-
driven diffusion, the surface-layer (the level below the lowest model level) mixing
length used in the outer layer (the level above the lowest model level) and the
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cloud-top driven diffusion. It has to be underlined here that the perturbation
to the transfer coefficient for momentum over land and over the ocean and
the von Kármán constant is changed to be dependent on the type of planetary
boundary layer (PBL) type.

Table 4.2: Perturbed parameter settings for the turbulent diffusion and subgrid orog-
raphy parameterization. The first column is the parameter identifier, the second is a
brief explanation of the role of the parameter in the model. The third column (dist.)
indicates the sampled distribution type: LN and N refer to the log-normal and normal
distribution, respectively. The fourth column presents the standard deviations of the
two underlying Gaussian distributions.

Parameter ID Role of the parameter Dist σ Scheme

Turbulent diffusion and subgrid orography
CFMOC Transfer coefficient for

momentum over ocean
LN 0.26, for

dry convec-
tive PBL
0.33

Mean/Median

CFMLA Transfer coefficient for
momentum over land

LN 0.65, for
dry convec-
tive PBL
0.78

Mean/Median

RKAP von Kármán constant LN 0.65, for
dry convec-
tive PBL
0.26

Mean/Median

TOFDC Coefficient in turbulent
orographic form drag
scheme

LN 0.78 Mean

HSDT St. dev. of subgrid
orography

LN 0.52 Mean

V DEXCLEN Length-scale for verti-
cal mixing in stable
boundary layer

LN 1.04 Mean

Regarding the convective parameterization, the most uncertain processes are
the mixing of the cloud with the environment (detrainment and entrainment
rates) and the mixing in the sub-cloud layer, the autoconversion in the micro-
physics of clouds, and the convective momentum transport. The uncertainty
of the latter is of particular interest because it depends on the organization of
convection and on the fact that it usually acts to reduce the shear, while in
the mesoscale convective system, it can also have an opposite effect (Ollinaho

93



Chapter 4. Mediterranean tropical-like cyclones simulated by ensemble forecasting

et al., 2017b). Indeed, the perturbation regards the zonal and meridional con-
vective momentum transport due to shallow and deep convection.

Table 4.3: Perturbed parameter settings for the convection parameterization. The first
column is the parameter identifier, the second is a brief explanation of the role of the
parameter in the model. The third column (dist.) indicates the sampled distribution
type: LN and N refer to the log-normal and normal distribution, respectively. The fourth
column presents the standard deviations of the two underlying Gaussian distributions.

Parameter ID Role of the parameter Dist σ Scheme

Convection
ENTRORG Entrainment rate LN 0.39 Mean
ENTSHALP Shallow entrainment rate LN 0.39 Mean
DETRPEN Detrainment rate for pene-

trative convection
LN 0.39 Mean

RPRCON Conversion coefficient
cloud to rain

LN 0.52 Mean

CUDU Zonal convective momen-
tum transport, deep con-
vection

N 1.22 Mean

CUDV Meridional convective mo-
mentum transport, deep
convection

N 1.22 Mean

CUDUS Zonal convective momen-
tum transport, shallow con-
vection

N 1.33 Mean

CUDV S Meridional convective mo-
mentum transport, shallow
convection

N 1.33 Mean

RTAU Adjustment time-scale in
CAPE closure

LN 0.78 Mean

ENTSTPC1 Shallow entrainment test
parcel entrainment

LN 0.39 Mean

Concerning the parameterization of clouds and precipitation microphysics, per-
turbation is added to the different processes of cloud formation, cloud dissi-
pation, rain formation, and snow aggregation. The rain evaporation rate, the
snow sublimation rate, and the vertical velocity that is used to calculate the
adiabatic temperature change for saturation adjustment of condensation and
evaporation are perturbed. These perturbations are chosen as they directly
change latent heating, which affects atmospheric stability and tropospheric dy-
namics, particularly in the storm tracks (Attinger et al., 2019, 2021). Indeed,
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these processes’ uncertainty comes from the low understanding of the rain and
snow particle size distributions, terminal fall speeds, and particle properties
(Boutle and Abel, 2012). Other uncertainties come from the variability of adi-
abatic heating and cooling, which drives condensation and evaporation. Other
perturbations regard the critical relative humidity parameter characterizing the
sub-grid heterogeneity of humidity in a grid box and define the relative humidity
at which condensation begins to form in the respective grid box.

Table 4.4: Perturbed parameter settings for the cloud and large-scale precipitation
parameterization. The first column is the parameter identifier, the second is a brief ex-
planation of the role of the parameter in the model. The third column (dist.) indicates
the sampled distribution type: LN and N refer to the log-normal distribution and the
normal distribution, respectively. The fourth column presents the standard deviations
of the two underlying Gaussian distributions.

Parameter ID Role of the parameter Dist σ Scheme

Cloud and large-scale precipitation
RAMID Relative humidity

threshold for the onset
of stratiform condensa-
tion

LN 0.13 Mean

RCLDIFF Diffusion coefficient
for the evaporation of
cloud at subgrid cloud
edges

LN 1.04 Mean

RLCRITSNOW Cloud ice threshold for
autoconversion to snow

LN 0.78 Mean

RAINEV AP Rain evaporation rate LN 0.65 Mean
SNOWSUBLIM Snow sublimation rate LN 0.65 Mean
QSATV ERV E Vertical velocity used to

calculate the adiabatic
temperature change for
saturation adjustment

LN 0.39 Mean

Finally, regarding radiation parameterization, the greatest source of uncertainty
in the IFS radiation scheme is the treatment of clouds and aerosols (Morcrette
et al., 2008). Indeed, with the use of the Monte Carlo Independent Column
Approximation (McICA) to represent sub-grid cloud distribution from the cloud
fraction and grid box mean cloud water content, uncertainty may arise due to
the vertical decorrelation length scale governing the degree to which clouds in
adjacent layers overlap, and due to the fractional standard deviation of water
content in a given model layer. regarding aerosols, their optical depth for 5
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different species is prescribed from a climatology derived from (Tegen et al.,
1997). The climatology varies as a function of longitude, latitude, and month.
To compute the 3D aerosol distribution, concentrations are assumed to de-
crease exponentially with height according to a specified scale height for each
species. SPP perturbs aerosol optical depth and this scale height independently.
Moreover, the other important aspect of parameterization is converting water
content to the optical depth of a layer. This is done by parameterizing it as a
function of effective radius, which for liquid clouds is calculated as a function
of liquid water content (Martin et al., 1994), while ice is a function of temper-
ature. Both parameters are perturbed.

Table 4.5: Perturbed parameter settings for the radiation parameterization. The first
column is the parameter identifier, the second is a brief explanation of the role of the
parameter in the model. The third column (dist.) indicates the sampled distribution
type: LN and N refer to the log-normal and normal distribution, respectively. The fourth
column presents the standard deviations of the two underlying Gaussian distributions.

Parameter ID Role of the parameter Dist σ Scheme

Radiation
ZDECORR Cloud vertical decorrelation

height
LN 0.78 Mean

ZSIGQCW Fractional st. dev. of horiz.
distribution of water con-
tent

LN 0.52 Mean

ZRADEFF Effective radius of cloud
water and ice

LN 0.78 Mean

ZHSV DAERO Scale height of aerosol nor-
mal vertical distribution

LN 1.04 Mean

DELTAAERO Optical thickness of aerosol LN 0.78 Mean

Perturbation distribution
As mentioned above, the SPP perturbation is applied through a 2D random
field generator. In its implementation, SPP uses a single scale with a decorre-
lation length scale of 1,000 km and a decorrelation time of 3 days (Figure 1 of
Lang et al. (2021)).

If the unperturbed parameters are defined as ξ̂j (the value of the parameter used
in the deterministic forecasts.) for each of the jth parameters, the perturbed
parameter is defined as ξj , where there are two options of drawing it from either
a Gaussian distribution or log-normal distribution, where either the mean or the
median is set equal to the unperturbed quantity. For most parameters, SPP
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samples from a log-normal distribution, thus:

ξj = exp(Ψj)ξ̂j , Ψj ∼ N (µj , σ
2
j ) (4.1)

Here, the perturbations Ψj sample a Gaussian distribution with a mean µj

and a standard deviation σj , both determined individually for each perturbed
parameter j. The above-mentioned two options considered for determining the
mean µj are:

1. µj = -1/2 σj , where the mean of the log-normal distribution of the
perturbed parameter ξj is equal to the value of the unperturbed parameter

ξ̂j ;

2. µj = -σj , where the median of the log-normal distribution of the per-
turbed parameter ξj is equal to the value of the unperturbed parameter

ξ̂j ;

Each perturbed parameter is assigned an individual random field and different
random fields are statistically independent. The log-normal distribution has
been chosen for practical reasons since it is ensured that the perturbed pa-
rameter values ξj retain their original sign. The only exception to the use of
independent log-normal distribution are the perturbations applied to the zonal
and meridional components of the convective momentum transport, which are
perturbed with multiplicative noise drawn from a bi-variate normal distribution
and they share the same 2D random field.

The perturbations exp(Ψj) vary in space and time using independent patterns
for each parameter j, and for each ensemble member (Figures 1 and 2 of Ollinaho
et al. (2017b)). The same horizontal pattern is applied to all model levels, in
order to maintain physical consistency within a grid column.

4.2.3.Validation Data
In order to analyze the predictive skill of the ensemble, besides the opera-
tional analysis, the ensemble forecast perturbation experiments have been com-
pared with the satellite-based, globally-gridded Global Precipitation Measure-
ment (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) (Huffman
et al., 2020). In GPM-IMERG, the retrievals from geostationary satellites are
blended seamlessly with information from the passive microwave (PMW) sen-
sors from low-orbit satellites. this is done in order to provide for both a high
accuracy and a high temporal (30 min) and spatial (≃ 10 km) resolution since
the precipitation estimation based on only the PMW suffers from a low sam-
pling rate. Furthermore, the data are also calibrated by using rain gauges at
the ground base. In this research, the 24-hr accumulated precipitation values
are used.
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4.2.4.Cyclone tracking
The method described here has been used to evaluate the tracks for both op-
erational analyses, used as verification and ensemble forecasts. The tracking
method is based on Picornell et al. (2014) and Ragone et al. (2018). The
algorithm is firstly aimed at finding the local minima of the sea level pressure
field at each time-step. Then, for each minimum, the gradient of the sea level
pressure along eight principal directions (E, NE, N, NW, W, SW, S, SE) inside
a circle of radius 200 km is computed. The computed gradient is then chosen
to be lower than 5hPa/200km in at least 6 directions. After the minimum
detection and filtering via selection through seal level pressure gradient, a prox-
imity condition is applied to construct the complete trajectory. Starting from
the first time-step, each minimum is connected to the following one, at the
following timestep, that respect the condition of being closer than ∆x = V∆t,
with V = 50km/h and ∆t = 3h. If this condition is met, the two consecutive
minima are considered to belong to the same trajectory. This condition has
been considered suitable and chosen according to the results of Ragone et al.
(2018). Once the trajectories have been found, only the trajectories that last
longer than 24 hours and those that spend more than 12 hours over the sea
are selected. Trajectories that spend less than half their duration over land or
within 100 kilometers of the coast will be discarded.

4.3.Overview of the Storms
In this section, an overview of the three medicanes chosen is given. A brief anal-
ysis of the synoptic environment is provided, following the literature. A summary
of the main features as retrieved by the analysis data: the storm duration, the
period, the region of occurrence and the asymmetry B, and upper-level thermal
wind −V U

T (the last two parameters will be explained in the following sections)
is provided in Table 4.6. The intensity (central pressure) and trajectory of each
storm are shown in Figure 4.1.

Table 4.6: Duration, region of occurrence, central pressure, CP, asymmetry parameter,
B, and upper-level thermal wind from the operational analysis for each storm. The
upper-level thermal wind, −V U

T and the thermal asymmetry parameter, B are taken
from the Hart cyclones phase-space (Hart, 2003).

Storm Region Period Duration (d) CP (hPa) B −V U
T

Ianos SM September 2020 7 994 0 73
Zorbas SM September/October 2018 5 993 4 39
Trixie SM October 2016 4 1009 1 38

*SM = Southern Mediterranean
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Fig. 4.1: Track of the three storms for the operational analysis. The colour of each
circle represents the intensity, meaning the central pressure in hPa.

4.3.1.Ianos
As the track suggests (Figure 4.1a) Ianos originated in the Gulf of Sidra after an
upper-level cutoff low that formed on the 9th of September moved eastward to
the western Mediterranean and northern Africa. Then between the 14th-15th
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of September, it emerged in the Gulf of Sidra, due to stratospheric dry intrusion
with high vorticity values (Comellas Prat et al., 2021). This process was also
accompanied by an anomalous value of SST which was 1.5 °C higher than the
normal (27-28 °C).

On the 16th of September, it intensified, and it moved to the Ionian sea, and
then on the 17th of September, the system showed a clear mid-level warm core,
lining up with the cut-off low. Ianos obtained tropical characteristics at this
point (CP = 994, B = 0, and −V U

T = 73). The analysis is capable to reproduce
a value similar to the observed pressure minimum of 995 hPa (Comellas Prat
et al., 2021).

4.3.2.Zorbas
Zorbas formed at 12:00UTC on 27 September 2018 close to North Africa and
then moved into the central Mediterranean, turning eastward and moving over
Greece into the Aegean Sea, where it finally decayed 4 d after its formation
(Figure 4.1b). Medicane Zorbas originated from a PV streamer created by the
elongation of a large-scale trough in eastern Europe, which reached the cen-
tral Mediterranean Sea at 00:00UTC on 27 September 2018 (Portmann et al.,
2020). This PV streamer broke up at the time of cyclogenesis, resulting in the
formation of a PV cutoff.

At the same time, as for Ianos, a large SST anomaly was taking place in the
Gulf of Sidra, with similar intensity as in the Ianos case. Zorbas cyclogenesis
was also accompanied by a strong low-level advection of air with low virtual
potential temperature, Θe, across the Aegean sea. Then this air was substan-
tially moistened by sea-surface fluxes as it traveled across the Aegean Sea. One
day after formation (28th of September), Zorbas presented a deep warm core
(Table 4.6). After reaching the state of the warm core when Zorbas reached
Greece on 29 September 2018, this was sustained for the next few days. Zorbas
reached its maximum intensity (observed 992 hPa), which is well captured by
the analysis.

4.3.3.Trixie
Medicane Trixie formed on the 28th of October, as the consequence of a deep
cut-off low which emerged on 26–27 October and moved from northern to
southern Italy in the following days, triggering deep convective storms along the
Italian west coast. This PV anomaly crossed the Adriatic Sea on 28 October at
O4:00 UTC (EUMETSAT analysis by Scott Bachmeier, Jochen Kerkmann, and
Djordje Gencic) and then quickly moved to Sicily and approached Tunisia and
Algeria. Then between the 26 and the 28 of October, the medicane started to
develop in the area of the old PV anomaly. On the 29th of October, it deep-
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ened and moved to the east of Malta, then on the 30th of October, it moved
eastward towards Greece (Figure 4.1c).

Trixie reached the warm core structure on the 30th of October. This is in line
with observation (EUMETSTAT report). Eventually, it passed near Crete on
the 31st of October. The most intense convective activity started after 12 h of
30 October 2016 and lasted until 31 October 2016 (Dafis et al., 2020). In the
analysis, there was only a short intensification period evident and the minimum
pressure was fluctuating between 1010 and 1014 hPa during the period from the
29th and the 30th of October, which might have been highly underestimated.

The three storms formed and developed in the same area, the Southern Mediter-
ranean, in the Ionian and Aegean Seas. This region has one of the highest
medicanes occurrence, as recognized in the literature (Cavicchia et al., 2014;
Zhang et al., 2021). They occurred in the same period of the year, between
September and November, the most frequent period for medicane occurrence
(Romero and Emanuel, 2013). From Figure 4.1 it can be gathered that there
are some differences in duration and intensity, with Trixie being the longest-
lasting of the three medicanes (in terms of the deepening phase) and Zorbas
and Ianos being deeper than Trixie.

4.4.Results
This section examines the ensemble forecast experiments for certain aspects that
are crucial for cyclones. The primary focus is on the cyclone track, as it is largely
influenced by large-scale processes. The second feature under investigation is
the cyclone’s intensity, as measured by central pressure. This value is considered
the most stable and robust metric for assessing the intensity of a cyclone on a
global scale (Davis, 2018). Moreover, the precipitation is analyzed. By looking
not only at the tracking but also at the intensity and precipitation it is possible
to assess the model’s capability to reproduce multi-scale processes. Then the
precipitation is analyzed.

4.4.1.Tracking
The ensemble tracking results are reported in Figure 4.2. As examples, the
tracks starting from the 16th of September are shown for Ianos, the ones start-
ing from the 27th of September are shown for Zorbas, and the ones starting
from the 27th of October are shown for Trixie.

By looking at Figure 4.2a to c and Figure4.2d to f the ensemble tracks follow
sensibly the references for Ianos and for Zorbas. On the contrary for Trixie, the
tracking, which starts one day prior to the starting date of the reference track
(starting on the 28th) follows the track until the 29th early hours (Figure 4.2g
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Fig. 4.2: Track of the three storms for the operational analysis as reference track
and for the ensemble members belonging to each experiment (SPP-Conv on the first
column, INI on the second column and SPP on the third column) for the three storms,
Ianos in a, b and c, Zorbas in d, e and f and Trixie in g, h and i. As background the
operation analysis is reported with the colours representing the intensity, meaning the
central pressure in hPa. For Ianos the experiments starting on the 16/09 have been
chosen, for Zorbas the ones starting on the 27/09 and for Trixie the ones starting from
the 27/10.

to i), then it diverges and ends up in North Africa, underlying a missed fore-
cast. For earlier starting dates (the 25th) only some members are able to follow
the reference track further in the Aegean Sea, but with a great error in terms
of position (not shown). Figure 4.2 shows that, as expected, the simulations
with initial conditions perturbations present usually more spread at the starting
point. However, the spread at later stages in the simulation seems to be similar
for both the INI experiment and the two experiments with the perturbation on
the physics, SPP, and SPP-Conv.

For Ianos the 16th of September was chosen as an example, but the behavior
for the three starting dates is quite similar, with them being able to reproduce
the trajectory quite well for the first days and the error increasing with time. It
never exceeds 400 km (not shown) and up to 48 hours is always below 100 km
(not shown). The error values are similar in all three experiments, but slightly
lower for the INI experiment. In the case of Zorbas and Trixie, since the starting
dates are earlier than when the reference track starts, the earlier the simulations
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start, the more uncertainty there is with respect to the starting position, thus
the more spread. In Figure 4.2 the latest starting dates simulations are shown
for both cyclones. For Zorbas, starting from the 27th, the obtained tracks are
following the reference with a small error at least for the first days, which is
anyway always under 300 km, at later stages. As in the case of Ianos the error
committed by the three experiments is similar. For Trixie, the error, regarding
the 27th, the last starting date shown in Figure 4.2g, h and i, goes up to
700/800 km for the three experiments.
The tracking results shown in Figure 4.2 are mirrored by the ensemble spread
and the relationship between the spread and the error presented in Figure 4.3
and Figure 4.4. Following the approach of Hamill et al. (2011), the spread of
the ensemble for a single cyclone ensemble forecast at a given forecast time is
defined as:

S(t) =
1

n

n∑
i=1

Di (4.2)

where Di denotes the great-circle distance of the ith ensemble member position
of the cyclone from the ensemble mean cyclone position. The total number of
ensemble members used for the calculation is 8 and the spread has been com-
puted for each starting date (3 dates for each medicane). The results, reported
in Figure 4.3, regard the same starting date as in Figure 4.2, thus for Ianos
is the 16th of September, for Zorbas the 27th of September, and for Trixie
the 27th of October, as also representative of the spread of the other starting
dates. It is shown that for Ianos (Figure 4.3a) the SPP and the INI experi-
ment show the largest mean track spread within the first 60-80 hours when the
SPP-Conv track spread increases. For Zorbas (Figure 4.3b) the spread in the
track is higher in the INI and the SPP experiments, compared to the SPP-Conv
for the whole forecast duration, while for Trixie, the INI experiment shows a
higher spread, especially in the first hours, becoming lower only than the other
experiments only after 100 h. Zorbas and Ianos present less spread than Trixie
upon initialization for the INI experiment in particular, compared to Trixie. This
might be due to the fact that for Trixie, which analysis track starts on the 28th
of October (Figure 4.2c) a great uncertainty in the initial position of the track
exists (not shown). Indeed the spread decreases after 48 hr, coinciding with the
28th of October (Figure 4.2c).

At later forecast steps, Trixie is also the cyclone with the highest spread for all
three perturbations compared to Ianos and Zorbas. By looking at the general
spread trends, the INI experiment spread is highest at initialization, as also seen
in Lang et al. (2012), since the EDA perturbations (INI experiment) are associ-
ated with a shift and intensification/weakening of the cyclone. Even considering
the case-to-case variability, in terms of the spread of the track, the SPP-Conv
experiment is the one with consistently less spread for all the cyclones.
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Fig. 4.3: Mean ensemble spread of the medicanes track for each ensemble perturbation
experiment for Ianos (a), Zorbas (b) and Trixie (c). The track spread is computed as
described in Eq. 4.2 and is reported in km. For Ianos the experiments starting on the
16/09 have been chosen, for Zorbas the ones starting on the 27/09 and for Trixie the
ones starting from the 27/10, in order to be consistent with the ensemble tracks shown
in Figure 4.2

The low error values obtained by Ianos and Zorbas, compared to the values
reached in the case of Trixie (≥ 800 km in Figure 4.2), make it not only the
medicane with the largest spread but also, the most significant error. Indeed,
it has been verified that this particular simulated cyclone diverges from the
analysis track. As mentioned above, the Trixie simulation track is probably a
result of the ensemble forecast not capturing properly the processes connected
to the cyclogenesis, but it can also be related to the simulations starting too
early before the medicane appearance. This is an aspect also recognized by
(Di Muzio et al., 2019) in the simulation of these events.

It has to be noted here, that both experiments with SPP, and specifically the
SPP-Conv one, manage to produce a spread comparable to the one produced by
the initial condition perturbation. Similar results have been found in Lang et al.
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Fig. 4.4: Ensemble Spread/skill relationship for each ensemble perturbation experiment
for Ianos (a), Zorbas (b) and Trixie (c). The spread is computed as in Eq. 4.2 and
the skill is the root mean squared error between the ensemble mean and the analysis
tracks. For Ianos the experiments starting on the 16/09 have been chosen, for Zorbas
the ones starting on the 27/09 and for Trixie the ones starting from the 27/10, in order
to be consistent with the ensemble tracks shown in Figure 4.2.

(2012). These results underline the importance of the role of convection and
convective heating in explaining the source of uncertainty in the development
of these cyclones.

However, when looking at the spread-skill relationship (shown in Figure 4.4),
measured by the ratio of the ensemble spread and the root mean squared error
between the ensemble mean and the operational analysis, it can be said that
as mentioned before the error is always greater than the ensemble spread and
they are only comparable in the first hours of simulations when the spread/skill
values are nearly 1 (Figure 4.4). Both the SPP and the SPP-Conv are usu-
ally more under-dispersed than the INI experiment in all three cases, but the
three experiments perform generally in the same way, with the INI experiment
presenting lower error after the second day for Ianos and Zorbas, but behaving
similarly in Trixie.

4.4.2.Intensity
The other important aspect investigated is the intensity of the cyclones ana-
lyzed. The intensity is assessed by studying the minimum core pressure at the
cyclone position.
The development of the core pressure with the simulations is reported in Figure
4.5 where the mean sea level pressure at the centre of the cyclone (Minimum
Core Pressure in Figure 4.5) is shown, with the ensemble mean, the 25%-75%
percentile and the 5%-95% percentile compared to the analysis for the three
ensemble experiment for chosen starting dates, as an example. For Ianos there
is an overestimation of the deepening of the cyclone (Figure 4.5a, d and g),
with a temporal shift of one day, compared to the analysis, which is consistent
in all three experiments. For Zorbas the minimum pressure is underestimated
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Fig. 4.5: Analysis of the mean seal level central pressure, for Ianos in the first column,
for Zorbas in the second column, and for Trixie in the third column. The plots show
the ensemble members’ development throughout the simulation. In each Figure the
ensemble mean is reported in black, the operational analysis is reported in red and the
two shaded areas represent the 25-75 % percentile and the 9-95 % percentile. The
SPP-Conv experiment is reported for each medicane in Figures (a), (b), and (c). The
INI experiment is reported in Figures (d), (e) and (f) and the SPP experiment in Figures
(g), (h) and (i). in (b), and the SPP experiment in (c).

only in the case of the SPP-Conv experiment, however, there is a shift of 12
hours compared to the analysis in the three experiments (Figure 4.5b, e and
h). In the case of Trixie, there is an underestimation (Figure 4.5c, f and i) and
the ensemble experiments are not able to capture the entire development of the
cyclone pressure.

In all three cyclones, the spread is larger for the SPP and the SPP-Conv experi-
ment compared to the INI one. This allows the reference analysis core pressure
to be included in the ensemble spread of these experiments compared to what
happens with the INI experiment. This is particularly true for Ianos and Zorbas.
Indeed, the development of these cyclones intensity is best captured by the
SPP-Conv experiment (Figure 4.5a and b). As pointed out before, there is a
shift of the minimum pressure of 12 to 24 hours compared to the analysis. For
Ianos this is also present in the simulation starting on the 15th but is absent
when starting the simulation on the 17th. This is due to the improved initial
conditions with the forecast start date closer to occurrence. The same can be
said for Zorbas.

As for Trixie, besides the first deepening happening on the 28th of October,
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which is well captured by all experiments, the second minimum, which is the
deepest, is not captured by any of the members of every experiment, even if
starting from the 27th of October (the last starting date). In general, there is
an underestimation of the pressure minimum and the trend up to the 29th is
captured better by the SPP experiment (Figure 4.5i).

4.4.3.Precipitation
The precipitation field has also been analyzed and verified against observation.
The verification field is chosen to be the precipitation, as in Vich et al. (2011);
Montani et al. (2011). Matching the forecast and the verifying data is made
difficult by the irregularly spaced ground network of observations and by the
fact that precipitation is not a continuous field, thus a point-to-point verifica-
tion presents several problems and is guaranteed by using satellite data. Thus,
in this work observations from satellites, specifically the above-discussed Inte-
grated Multi-satellite Retrievals for GPM (GPM-IMERG), are used.

The precipitation structure of the three medicanes, in terms of intensity and
position, is similar to what is observed in tropical cyclones (Zhang et al., 2021,
2019c). Indeed, there are similarities in their rainfall structures and those for
Mediterranean cyclones (Flaounas et al., 2018) where most precipitation as-
sociated with medicanes is concentrated to the northeast side of the cyclone
centre, as is shown in Figure 4.6 for the three cyclones. For the three cyclone,
the ensemble mean of the last starting date is shown. For each cyclone, the
daily accumulation on the day of the ”tropical-like” phase is shown in Figure
4.6. For Ianos is the 17th of September, for Zorbas is the 28th of September,
and for Trixie is the 28th of October. The daily accumulation values from the
ensemble forecast experiments are comparable, within the error to the observed
values only regarding Ianos. In general, the maximum is better captured by the
INI experiment (Figure 4.6b, f, l). The standard deviation of each ensemble
experiment reveals that there is higher uncertainty related to the higher values
of the precipitation distribution (Supplementary Figure S1). This is consistent
for all three cyclones. There is little difference between the SPP-Conv and the
SPP experiment in terms of precipitation distribution. This mirrors what was
shown in Figure 4.5.

The positioning of the maximum precipitation in the presented distributions
(Figure 4.6), in general, is in accordance with the observed GPM-IMERG distri-
bution. However, there are some other secondary maximums in the distribution
that are not well captured, for all three cyclones. The daily accumulated precip-
itation shown in Figure 4.6 belongs to the simulations with the latest starting
date, where the maximum precipitation is better captured. Indeed, the error in
the simulated ensemble mean precipitation maximum compared to the obser-
vation is decreasing with the forecast start date closer to occurrence. This is
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a) b) c) d)

e) f) g) h)

i) l) m) n)
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SPP-Conv
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SPP

SPP

SPP

Fig. 4.6: Daily accumulated precipitation (mm/day) for the three ensemble experi-
ments ensemble means compared to the satellite observation GPM-IMERG. For Ianos
the 17th is shown in Figures (a), (b) (c) and (d). For Zorbas the 28th is shown in
Figures (e), (f) (g) and (h). For Trixie the 28th is shown in Figures (i), (l) (m) and
(n). the SPP-Conv ensemble forecast accumulated precipitation is reported in the first
column, the SPP ensemble in the second column, the INI ensemble in the third column
and the observations in the fourth column. For Ianos the experiments starting on the
17th is shown, for Zorbas the ones starting on the 27th and for Trixie the ones starting
from the 27th.

specifically true for Ianos and Zorbas (as it is shown in Supplementary Figure
S2), while for Trixie, the maximum is equally underestimated. For Trixie, the
simulation is not able to capture the intensity of the precipitation. This is linked
to the absence of the deepening of the cyclone and the precipitation starts to
decrease sensibly after the 28th. This is seen within all the starting dates.
In order to evaluate the whole performance of the ensemble several probabilistic
precipitation thresholds have been chosen from 1 to 150 mm, and all the en-
semble members have been considered. Following the cyclone position at each
timestep, an area of 500 km2 around the cyclone centre has been considered for
evaluation. The analysis has been carried out using many verification measures,
following the literature (Montani et al., 2011; Marsigli et al., 2008; Vich et al.,
2011; Buizza et al., 1999). A brief description of these measures is given in the
Supplementary Information. All the verification results have been calculated for
the entire simulation period, according to their starting date.

Starting with the Brier Score (BS) (Brier et al., 1950) it can be said that the
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three ensemble experiments for the three medicanes are generally better than
the control forecast at simulating the observed precipitation at all thresholds,
as it is shown in Figure 4.7. Indeed, BS indicates the root mean squared
error between the observed and the forecast probabilities, thus the lower the
better, and in our study, the BS is higher in the control run than in the three
perturbations runs.
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Fig. 4.7: Brier score for the SPP-Conv ensemble forecast experiment, for the SPP
ensemble forecast experiment, and for the INI ensemble experiment for Ianos (a), Zorbas
(b) and Trixie (c).

For Ianos, which presents the lowest values, the three perturbation ensembles
are almost indistinguishable (Figure 4.7a), while for both Zorbas and Trixie the
perturbation experiment SPP-Conv has a slightly higher value than the SPP
and the INI experiment (Figure 4.7b and 4.7c). The difference between the
three experiments decreases with increasing thresholds, and in general, the im-
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provement of the ensemble experiments compared to the control run decreases
for extreme events when the Brier score tends to zero as the events become
increasingly rare.

To further analyze the respective skill of the three ensemble experiments, the
Relative Operating Curve (ROC) has been computed and it is shown in Fig-
ure 4.8. It measures the ability of the forecast to discriminate between two
alternatives outcome and thus is a measure of resolution. In general, the ROC
Area shows that the SPP-Conv is better at discriminating between events and
non-events than the SPP and INI perturbations in Zorbas and Ianos (but only
between 10 and 50 mm), while for Trixie all three perturbations perform simi-
larly (Figure 4.8c).
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Fig. 4.8: ROC Area for the SPP-Conv ensemble forecast experiment, for the SPP
ensemble forecast experiment, and for the INI ensemble experiment for Ianos (a), Zorbas
(b) and Trixie (c).

The ROC area presents values above 0.70 for Ianos from 2 mm to 50 mm (Fig-
ure 4.8a), which is a good value according to Buizza et al. (1999) for a useful
forecast. This is true also for Zorbas from 2 mm and 30, and for Trixie, but
only for 2 mm. The ROC area value remains however greater than 0.50 until 50
mm (100 mm for Trixie). The difficulties in predicting extreme precipitation,
values over 50 mm may be probably due to the grid length of 9 km. This is
also possibly linked to the lack of the deepening of the cyclone in the ensemble
forecast experiments, compared to the observations, as it will be shown in the
next section. In general, Trixie is the simulated medicane with a lower skill for
all the perturbations.

4.4.4.Thermal structure and asymmetry
To complete the analysis of these three storms, the thermal structure, and the
thermal asymmetry have been investigated. The chosen parameter to quantify
the latter has been recognized in the upper-level thermal wind, −V U

T , which
is considered to be a relevant parameter in distinguishing tropical-like cyclones
from fully baroclinic cyclones (Mazza et al., 2017), and secondly on the thermal
asymmetry, B. These parameters belong to the theory of the three-dimensional
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cyclone phase space introduced by Hart (2003). There, the thermal asymmetry
is defined as the storm-motion-relative 900–600 hPa thickness asymmetry across
the cyclone within its radius:

B = (Z600 hPa − Z900 hPa|R − Z600 hPa − Z900 hPa|L) (4.3)

where Z is the geopotential height, R indicates the right of current storm mo-
tion, L indicates the left of storm motion, and the overbar indicates the areal
mean over a semicircle around the cyclone centre.

Instead, the cyclone’s upper-level thermal structure (i.e., its cold or warm core)
is indicated by −V U

T . If it attains a positive sign, the cyclone attains an upper-
level warm core. Indeed the −V U

T is defined as:

−|V U
T | = ∂(∆Z)

∂ln(p)

300 hPa

600 hPa

(4.4)

The two pressure levels have been changed from 600 hPa to 700 hPa and from
300 hPa to 400 hPa due to the lower height of the tropopause in the mid-
latitudes with respect to the tropics (Picornell et al., 2014). These values are
computed within a 200 km radius around the detected cyclone center. In the
Hart (2003) formulation, this radius was chosen to be 500 km, but given the
smaller size of medicanes compared to tropical cyclones (Miglietta et al., 2013),
the radius used in this study is smaller, 200 km. The choice to consider im-
portant only the upper-level structure, compared to the lower-level (thus using
also the lower-level thermal wind −V L

T ) is because its positive value can char-
acterize not only medicanes but also extratropical cyclones with warm seclusion
(Hart, 2003). In the case of the thermal asymmetry, the threshold value of
B = 10 m has been determined by analyzing ECMWF reanalyses ERA40 at
1.125◦ of the resolution, from which no major hurricane (winds of greater than
210 km/h) had associated with it a value of B that exceeded 10 m (Hart and
Evans, 2001). Even if the threshold value of B has been originally determined
for larger tropical/extratropical cyclones, previous studies have shown that such
value is also useful in the case of medicanes (Miglietta et al., 2011).

The Hart parameters, −V U
T and B, are analyzed in Figure 4.9 for Ianos, in

Figure 4.10 for Zorbas and in Figure 4.11 for Trixie. The focus has been put on
the values where the deepening of the cyclone occurred in the observation, thus
the values in Table 4.6 are reported as references in Figures 4.9-4.11. There, the
violin plots of the forecast distribution for each experiment at different starting
dates are shown, with the median (white dot) and the interquartile range (gray
bar). The sections at the sides of each violin plot represent the kernel density
estimation to show the distribution shape of the data (wider sections of the
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violin plot represent a higher probability that members of the population will
take on the given value; the skinnier sections represent a lower probability).
The choice for the violin plot has been made because, unlike a box plot that
can only show summary statistics, violin plots depict summary statistics and
the density of each variable.

a) b)

c) d)

e) f)

Fig. 4.9: Ensemble forecasts violin plots of thermal wind, −V U
T , and thermal symmetry,

B, for each start date for the Ianos storm. The violin plot is a hybrid of a box plot and
a kernel density plot, which shows peaks in the data. The white dot represents the
median, the thick gray bar in the center represents the interquartile range (25th-75th)
and the thin gray line represents the rest of the distribution. On each side of the gray
line is a kernel density estimation to show the distribution shape of the data. At the
top, in Figure (a) and Figure (b) the SPP-Conv ensemble experiment violin plots are
shown, in the middle, in Figure (c) and Figure (d) the SPP ensemble experiment violin
plots are shown, and at the bottom, and in Figure (e) and Figure (f) the INI ensemble
experiment violin plots are shown.

The spread of both the thermal wind and asymmetry does not present a mono-
tonic behavior, a decrease or increase with different start-dates in all three
storms. In the case of Ianos, it decreases with the start date for the ther-
mal wind (Figures 4.9a, 4.9c and 4.9e.), but it is comparable for the thermal
asymmetry, as shown in Figures 4.9b, 4.9d, and 4.9f. Zorbas exhibits a usually
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smaller spread at the last start date compared to the previous ones regarding
the thermal wind (Figure 4.10a and 4.10e). Similarly to what happens for Ianos,
there is a comparable spread for the thermal asymmetry, as can be seen in Fig-
ure 4.10b, 4.10d and 4.10f. In Trixie, the spread is once again similar for the
thermal asymmetry parameter (Figures4.11b-d-f) and it oscillates between the
three start dates regarding the thermal wind, as it is shown in Figures 4.11a-c-e.

a) b)

c) d)

e) f)

Fig. 4.10: Ensemble forecasts violin plots of thermal wind, −V U
T , and thermal symme-

try, B, for each start date for the Zorbas storm. The violin plot is a hybrid of a box plot
and a kernel density plot, which shows peaks in the data. The white dot represents the
median, the thick gray bar in the center represents the interquartile range (25th-75th)
and the thin gray line represents the rest of the distribution. On each side of the gray
line is a kernel density estimation to show the distribution shape of the data. At the
top, in Figure (a) and Figure (b) the SPP-Conv ensemble experiment violin plots are
shown, in the middle, in Figure (c) and Figure (d) the SPP ensemble experiment violin
plots are shown, and at the bottom, and in Figure (e) and Figure (f) the INI ensemble
experiment violin plots are shown.

The forecast distribution in the three ensemble experiments presents different
behaviors in comparison with the analysis reference value (ref in Figures 4.9-
4.11) and with the start date in the three experiments.
Ianos shows a reduced spread with later start dates accompanied by the dis-
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tribution value approaching the analysis value. This is true in particular for
the SPP-Conv (Figure 4.9a) experiment and for the SPP one (Figure 4.9c).
Nonetheless, all three experiments distribution −V U

T values manage to be close
to the analysis one. Regarding the thermal asymmetry parameter the distribu-
tion spread, which is only slightly lower in the third start date, the latest, is
accompanied by a consistent slight overestimation ( B around 4-6) of the anal-
ysis values (B = 0). This is verified for all three sets of ensemble experiments
(Figures 4.9b-d-f). However, even with this underestimated by the ensemble
forecast experiments, the median values of the distributions are always below
the threshold of 10 m which would define the system as a frontal system rather
than a non-frontal one (Miglietta et al., 2013).
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Fig. 4.11: Ensemble forecasts violin plots of thermal wind, −V U
T , and thermal symme-

try, B, for each start date for the Trixie storm. The violin plot is a hybrid of a box plot
and a kernel density plot, which shows peaks in the data. The white dot represents the
median, the thick gray bar in the center represents the interquartile range (25th-75th)
and the thin gray line represents the rest of the distribution. On each side of the gray
line is a kernel density estimation to show the distribution shape of the data. At the
top, in Figure (a) and Figure (b) the SPP-Conv ensemble experiment violin plots are
shown, in the middle, in Figure (c) and Figure (d) the SPP ensemble experiment violin
plots are shown, and at the bottom, and in Figure (e) and Figure (f) the INI ensemble
experiment violin plots are shown.
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In the case of Zorbas, the forecast distribution of three experiments contains
the reference analysis values for both the thermal wind and the thermal asym-
metry (Figure 4.10). however, while for −V U

T the spread of the distribution
is lower, especially for later start dates, thus the median values compare well
with the analysis value, for B, the spread is greater and thus the median values
of the distribution underestimate the analysis value in most cases (see Figures
4.10b-d-f), with outliers associated to a value of B greater than 20. For Trixie,
instead, there is a consistent underestimation ( with −V U

T around -25 to -50) of
the thermal wind, in all three ensemble experiments. The forecast distribution
is closer to the analysis values ( −V U

T = 39) for the third start date, especially
for the INI experiment, as it is shown in Figures 4.11a-c-e. For asymmetry, the
forecast distribution contains the analysis value for all three ensemble experi-
ments, similar to Zorbas. However, differently from Zorbas the value here is
only slightly underestimated, with the median value of the distribution closer
to the analysis value (see Figures 4.11b-d-f).

Generally, the three ensemble experiments are able to reproduce the thermal
structure of the storms, showing in some cases decreased spread with increas-
ing start date, probably linked to the fact that these start dates coincide with
the period in which the cyclone had already developed (see Figures 4.9a-c-e
for Ianos). This behavior is consistent for all three perturbation experiments.
However, while for Ianos the spread is lower in the SPP and SPP-Conv exper-
iments than in the INI experiment, for Zorbas and Trixie, the spread is lower
in the SPP-Conv and INI experiment, than in the SPP one. Furthermore, for
Trixie, the thermal structure is underestimated (Figure 4.11), meaning that a
warm core was never reached in the ensemble forecast experiments. Looking at
the three start dates used in this study they are probably too early to produce
the deepening of the cyclone, as also underlined previously when looking at the
central pressure MAE and ME and the low precipitation scores. Furthermore,
the limited intensification of Trixie, compared to Ianos and Zorbas, could be
limiting the proper simulation of the cyclone itself.

Regarding thermal asymmetry, it is usually predicted quite well by the three
ensemble forecasts experiments, given the reference analysis values lie in most
cases in the interquartile range of the forecast distributions. In the case of
Ianos, there is an underestimation of the asymmetry, with the storm attaining
lower thermal asymmetry than in the analysis, whereas for Trixie and Zorbas the
forecast distribution deviates less from the reference values. There is a slight
reduction of the spread in the last start date, as in Di Muzio et al. (2019),
especially for Ianos, given that, the appearance of a symmetrical storm can
benefit from improved initial conditions. Differently from the thermal structure,
in this case, the three ensemble forecasts experiments behave similarly in terms
of spread and simulation of the reference values. Lastly, the presence in some
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cases of a bias between the distribution of the ensemble forecast and the control
run (as shown for example in Figure 4.10a and c), could be related mainly to
the small ensemble size.

4.5.Conclusion
Predicting and simulating medicanes is a difficult task due to them being ex-
treme events found near the tail of the forecast distribution (Majumdar and
Torn, 2014) and due to the complexity of the processes involved. The specific
barriers to predictability and the atmospheric conditions that lead to medi-
canes formation and evolution are not fully understood. Research utilizing
multi-physics approaches has found that the track, intensity, and duration of
medicanes are heavily sensitive to factors such as convection, microphysics, and
boundary-layer parameterizations (Ragone et al., 2018; Miglietta et al., 2015).
This study indeed is a first step towards the understanding of this sensitivity by
using ensemble forecast simulation.

The analysis has been focused on three medicanes with the use of the ECMWF
model IFS ensemble forecast system. Three experiments were conducted, the
operational ensemble forecast with the perturbation at initial conditions, INI,
and two experiments with SPP, in one case perturbing only the parameters of
the convection parameterization, SPP-Conv, and in the other perturbing the
parameters of all relevant physical parameterizations, SPP. The used approach
has been aimed at the analysis first and foremost of tracking and intensity,
meaning central pressure. Secondly, the precipitation field has been analyzed,
and finally, the focus has been put on the parameters characterizing the thermal
structure of the cyclone and its asymmetry.

From the study, it was found that the use of SPP, and specifically the pertur-
bation of convective parameters (SPP-Conv), in terms of tracking spread and
precipitation intensity compare well to the INI experiment. Similar results have
been obtained also in Ollinaho et al. (2017b), especially regarding precipitation.
The three experiments are usually under dispersive when it comes to tracking
position, even if the INI experiment is giving slightly better results. It has to
be noted that the ensemble spread and mean are usually lower in the SPP ex-
periments. Nonetheless, the latter can produce the same spread as the initial
condition perturbation experiment, underlying the benefit of the introduction of
perturbations of physical parameters, especially regarding convection, in com-
parison with only using the perturbations of the initial conditions (Lang et al.,
2012; Ollinaho et al., 2017b).

Regarding the reproduction of the minimum central pressure by the ensemble
forecasts (Figure 4.5) it is found that in general there is a time shift in the re-
production of the minim intensity, where both Ianos and Zorbas ensemble mean
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reach the maximum intensity with a delay. Since the delay is decreasing with
the forecast start date closer to the occurrence, this is attributable to improved
initial conditions. Regarding Ianos and Zorbas, the ensemble spread for the
SPP experiments is always able to include the analysis one, compared to the
INI experiment (Figure 4.5).

By looking at the simulated precipitation distribution, compared to the GPM-
IMERG satellite observations, show that only for Ianos, the precipitation field is
well reproduced by the ensembles, with the INI experiment being slightly more
intense than the SPP and SPP-Conv experiments. Even if the GPM-IMERG
dataset, tends to overestimate precipitation over the Mediterranean, the pre-
cipitation simulated for Zorbas and Trixie is too weak. However, it is discussed
that in general, the precipitation maximum compares better with the forecast
start date closer to the occurrence, thus for Zorbas, starting the ensemble fore-
casts on the 28th would have shown better-simulated precipitation. However,
the precipitation maximum values are slightly better simulated by the INI ex-
periment also for Zorbas. The analysis of the precipitation field deepened by
computing some statistical scores and the results show that the SPP-Conv is
slightly better than the SPP and INI experiment. The BS score results are quite
similar between the three experiments and generally show how the three ensem-
ble forecasts perform better than the control forecast. The ROC-Area results
(Figure 4.8) instead show that the SPP-Conv and SPP ensemble experiments
present higher values than the INI one. Furthermore, all three forecasts present
useful values in terms of precipitation prediction (Buizza et al., 2008), being
higher than 0.5 and in most cases higher than 0.7. The most significant values,
occur in Ianos for a wide range of precipitation thresholds (from 2 to 50 mm),
making it the most well-captured storm of the three.

Regarding the tracking, the precipitation, and the intensity of the cyclone there
is a common gradual decrease of the error with the forecast start date closer
to the occurrence of the medicane. This is consistent for all three ensemble
experiments and it is specific for Ianos and Zorbas. Usually, the later starting
forecasts tend to be more accurate (lower error and spread). For Trixie, this de-
crease in the error is weaker and in some cases nonexistent. Indeed, as pointed
out in the results the simulation of this particular cyclone can be considered a
missed forecast.

Through tracking, it was verified that with regard to the Trixie simulation, there
is a southeastward shift of the trajectory with respect to the analysis and, that,
among the three storms, the best predicted is Ianos. The southeastward shift
was identified after the analysis of the ensemble spread and error. A lower
spread in the tracked position was found for Zorbas and Ianos compared to
Trixie, but the error of Trixie exceeds 800 km. This is attributable to the fact
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that the ensemble forecast starts too early with respect to the cyclone intensi-
fication phase for Trixie. This result, in particular, aligns with previous studies
that had pointed to Trixie’s low occurrence probability up to two days earlier
(Di Muzio et al., 2019). Indeed, There is an inherently low probability of medi-
canes occurrence (as seen in Di Muzio et al. (2019)) and the development of a
warm core cyclone depends on many factors, large-scale factors and small-scale
factors like surface fluxes, that can be improved by the initial conditions of a
preexisting cyclone. The decrease of the spread at later starting dates in Trixie
can be correlated with the higher probability of occurrence and the better re-
production of the physical processes leading to cyclone intensification.

By the analysis of the cyclone thermal structure and asymmetry, it is shown
that if for Ianos and Zorbas the tropical-like phase is reached, with a grad-
ual evolution of the error and spread, where there is a lowering of the spread
accompanied by the distribution approaching the reference values (upper-level
thermal wind in Figure 4.9 and 4.10). In those cases, the forecasts are accurate
at reproducing both the thermal structure and symmetry of the cyclones, com-
pared to the analysis value. Both Zorbas and Ianos deep warm core phase is
well captured, especially with the forecast start date closer to the occurrence.
The reduction of the spread with the forecast start date closer to occurrence is
in line with what was found in the literature, specifically for Zorbas. Indeed, in
Portmann et al. (2020) it was found that later forecasts can capture better the
thermal structure of Zorbas, due to the lower uncertainty of the positioning of
potential vorticity streamer connected to the generation of the medicane. This
aspect will be explored in the following work, especially in relation to the SPP
perturbations.

The only exception to the reasonable reproduction of the storm thermal struc-
ture is the upper-level thermal wind in Trixie (Figures 4.11a-c-e). This means
that for Trixie, where the analysis value reported the presence of a warm core
(−V U

T = 25 in Table 4.6), the three ensemble forecast presents a cold core
cyclone (negative −V U

T values). This, together with the underestimation of
the deepening of the cyclone, can explain the low scores for the precipitation
analysis since the simulated cyclone is not able to reach the warm core. It has
to be noted here that also the limited intensification (core minimum pressure
comparison in Table 4.6) of Trixie may have represented a limit in its simulation
by the ensemble.

Moreover, the analysis of the thermal structure and symmetry indicates that
for the upper-level thermal wind, the smaller spread is in most cases obtained
in the SPP-Conv experiment (in particular at later forecasts), while the spread
is comparable for the three ensemble experiments regarding the thermal sym-
metry. When looking at the distance between the ensemble mean and the
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reference values in Figures 4.9-4.11, there seems to be a similarity between
The INI ensembles and the two SPP ones. This, similarly to the spread/skill
relationship presented for the tracking, points out the possibility of using SPP
in ensemble forecasting to generate a similar spread/error in the ensemble dis-
tributions compared to only using initial conditions perturbations. Indeed the
ensemble experiments behave similarly regarding the simulation of the tropical-
like characteristics of the three cyclones. Furthermore, the SPP and SPP-Conv
experiments are found to be extremely similar, possibly meaning that the un-
certainties linked to the convection parameterization are predominant in the
simulation of these types of phenomena. It would also be interesting, as future
development, to look into the combined effect on spread and error of initial
conditions and model perturbation, to get the complete ensemble set-up.

Considering all the parameters used in this analysis, it can be assessed that the
ECMWF ensemble forecasts model can adequately reproduce medicanes with
their tropical-like features. The limitations of this work are related to the fact
that only 8 members and three start dates are used for each forecast. Nonethe-
less, the result of this study, compared to previous ones (Di Muzio et al., 2019),
which used only the operation ensemble forecast of ECMWF, points out the
benefit of using the Stochastically Perturbed Parameterization, SPP ensemble
forecast compared to only perturbing the initial conditions. The SPP and espe-
cially the SPP-Conv experiments show lower but comparable spread and better
precipitation scores than the INI experiment. It is also pointed out that there
is an improvement in the simulation of medicanes tropical traits by initializing
the simulation when the cyclone already exists, due to improved initial condi-
tions. The expansion of this work will be aimed at investigating the physical
mechanism behind these results, especially regarding the deepening of the cy-
clone, its tracking, and its transition to the tropical phase. This will be done
by examining the interplay between the physics perturbations and the affected
processes at different spatial and temporal scales leading to the medicanes for-
mation and evolution. Furthermore, since it is known that there are different
categories of medicanes Miglietta and Rotunno (2019), an investigation will be
done to assess to which category these medicanes belong and to expand the
ensemble experiments also considering a greater number of medicanes, to cover
all categories.
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5.1.Summary of the chapters
This work tackles different types of modeling of the water cycle budget of the
atmosphere. In the second chapter, the modeling is applied to connect the
atmosphere water cycle, by means of precipitation and evaporation, to inland
water bodies’ mass balance. In the third chapter, the modeling is done with
Cloud Resolving Models, to study the climate feedback connected to the orga-
nization of convection (the instability of the Radiative Convective Equilibrium)
in order to understand possible common feedback of this type of model when
simulating convective motions. In the fourth chapter, the modeling is carried
out with a General Circulation Model, through ensemble forecasting, to look
at the simulation of mesoscale convective systems, Mediterranean tropical-like
cyclones focusing on how the cyclones feature are reproduced, especially when
the uncertainty of the convective parameters is taken into account.

Chapter 2 is concerned with the use of ERA5 reanalysis for the modeling of wa-
ter level proposed for evaluating the water budget for small, shallow lakes. The
modeling has been applied specifically to the case study of the Trasimeno lake
in the Umbria region, Central Italy, for the period 1991-2019. The model has
been developed to answer the first research question. Indeed, the model can be
used not only to reproduce the water mass balance of a shallow lake in the past,
but can also be used to look at the impact of climate extremes on the water
balance, thus informing also future possible climate change effects on the lake.
This is particularly true if one considers the link found in the chapter regarding
the dramatic change (increase and decrease) in lake levels and two periods of
climate extremes, the intense heat wave during 2003-2005 which decreased the
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lake levels to their ever-recorded minimum (-1.9 m), and the period of extreme
precipitation (2012-2013) which made the lake levels rise around 0.30 m in one
month.

The modeling is based on the basic assumption that precipitation and evapo-
ration are the fluxes that mostly influence the water balance of a closed lake
and it is evaluated on a monthly time scale. The model can adequately re-
produce the lake water level, and there is a strong linear link between the
observed variation of the lake level, ∆H, and the values of the water storage,
δ, evaluated as the difference between precipitation and evaporation. However,
some discrepancies arise precisely in two periods characterized by an extreme
climate anomaly: the drought 2003-2005 and the intense precipitation period
2013-2016, when reanalysis overestimates and underestimates precipitation, re-
spectively, and the groundwater inflow (not considered in the model). This last
aspect has been attributed to the low resolution of ERA5 Land, which even if
representing one of the best-performing reanalyses, does not resolve small-scale
processes but parameterized them, affecting the water mass balance modeling.
More specifically, the results here presented underline that in Central Italy the
high resolution of ERA5 and ERA5 Land is not able to capture the complex
orography of the region and the processes connected to the latter. However,
the proposed model allows capturing the monthly variability of the level of the
Trasimeno lake.

Indeed, compared to other possible approaches, what makes the proposed one
relevant is the fact that it uses a single source of climate data (i.e., ERA5 Land),
which has the advantage of being spatially consistent and being the only global
reanalysis including a lake model (i.e., Fresh-water Lake model, FLake), that
provides the lake heat balance and, then it guarantees the reliability of both the
evaporation and precipitation fluxes.

In Chapter 3 the second research question has been tackled by means of per-
forming two Radiative Convective Equilibrium simulations with two different
Cloud Resolving Models (SAM and ARPS) and comparing their properties
while reaching a statistical equilibrium of precipitation. The study has been
specifically aimed at studying the convective organization occurrence in the
two models, the instability of RCE, and the mechanism leading up to it. The
study of the differences between the two simulations has been carried out by
looking at many aspects of the simulations, the total condensed water, and pre-
cipitation distributions, the standard deviation of the column relative humidity,
the organization indexes, the cloud fraction, cloud condensate and radiative
heating profiles. In particular, it has been evinced that the two models reached
an organized state presenting different warming and drying of the whole domain.

121



Chapter 5. Conclusion

This has been linked to the different properties of the sub-cloud layer in the
two models and the effect that this has on the cold pools and the feedback
that helps maintain convection organization. The latter has been assessed by
computing the frozen moist static energy budget and its variance, looking at the
competing effects of moisture and radiative feedback affecting the convective
organization. In the study, it was found that in SAM, longwave radiative feed-
back is important in the initial stages of the organization, while an up-gradient
transport of moist static energy is necessary for the maintenance of the orga-
nized state. on the other hand, in ARPS the radiative feedback induced by high
clouds is the main feedback sustaining convective organization, together with
the moisture convection feedback localizing convection.

These results are found to be connected to the cold pool effect. The latter is
regarded as a negative moisture feedback to convective organization, since it
produces a down-gradient transport of moisture in dry regions, therefore slow-
ing down convective aggregation. On the other hand, if cold pools, in moist
regions, and radiative subsidence, in dry regions, are strong enough to generate
low clouds at the boundary between moist and dry regions, then an up-gradient
low-level transport of moist static energy from dry regions to moist regions
develops by an indirect positive longwave feedback. This mechanism is then
responsible for maintaining convective organization.

Therefore, evaporatively-driven cold pools can help the expansion of radiatively-
driven cold pools, as a secondary effect, by triggering low clouds in dry regions.
In ARPS, the sub-cloud layer becomes saturated, causing less rain evaporation,
weaker downdrafts, and weaker cold pools, thus allowing the localization of the
convection in moist regions by weakening the negative influence of cold pools.
Stronger cold pools in SAM, instead, help the creation of shallow clouds in dry
regions, increasing the longwave feedback responsible for their expansion; while
delocalizing convection in moist regions and therefore opposing high-cloud ra-
diative feedback. The main finding is that negative moisture feedback in ARPS
can lead to lower values of aggregation metrics compared to SAM, mainly due
to the strong drying of dry regions in the SAM model which corresponds to
stronger warming and drying of the domain.

Lastly, Chapter 4 is concerned with answering the third research question by
performing ensemble forecast simulations of medicanes. A comparison between
three ensemble forecast experiments has been set up, by using the ECMWF IFS
ensemble forecasts. Three different ensemble forecasts have been performed
by using perturbation of the initial condition only, by Ensemble Data Assimila-
tion and by perturbing parameters belonging to the convective parameterization
only, and by perturbing parameters belonging to all physical parameterizations,
by means of the Stochastically Perturbed Parameterizations. The chosen med-
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icanes under study are among the strongest in recent years: Ianos, Zorbas, and
Trixie. The study is carried out to investigate the simulation of the key mea-
surements for a cyclone. First of all the central pressure error and track position
spread is analyzed. It is found that the use of SPP and specifically the pertur-
bation of convective parameters shows comparable results to the use of initial
conditions perturbations, especially regarding the spread/skill relationships for
tracking and by looking at the analysis of the central minimum pressure. Thus,
the change in the convective parameterization alone (changes in convective
heating in the simulations) is able to produce the same spread as introducing
errors in the initial conditions.

The analysis then passed on to precipitation with the use of probabilistic sta-
tistical scores and once again showed that the precipitation characteristics have
been reproduced well and the ensemble with convective parameterization per-
turbation performed better that the other two experiments. Generally, the three
ensemble forecasts performed better than the control run and the IFS ensemble
forecasts produced useful values in terms of precipitation prediction. It is also
found that there is a link between the error present for central pressure, the
low scores for precipitation, and the absence of a warm core in the ensemble
forecasts for Trixie. Finally, the cyclone thermal structure and symmetry have
been analyzed in the simulations. The three ensemble forecasts experiments
exhibit a non-gradual evolution with increasing start-date. In some cases, there
is a lowering of the spread accompanied by the distribution approaching the
reference values, the operational analysis. However, the forecasts are pretty
accurate at reproducing both the thermal structure and symmetry of the cy-
clones, compared to the analysis value, with the smaller spread and error in
most cases obtained in the perturbed convective parameterization experiment
for the upper-level thermal wind.

5.2.Concluding remarks
The model in the second chapter, even with the mentioned shortcomings, al-
lows for capturing the monthly variability of the level of the Trasimeno lake
and could be applied to other shallow lakes with similar features, and therefore
makes reanalyses an alternative to other methods for modeling the water mass
balance of inland water bodies. Before applying this method to other shallow
lakes, the potential impact of factors other than precipitation and evaporation
needs to be evaluated: inflow and outflow, specifically considering groundwater,
lake ice cover, and the presence of tributaries, e.g. rivers. The performance of
the model could improve by including lake withdrawals, recharges, and specif-
ically groundwater inflow. On one hand, the outcome of this work urged the
Umbria regional authorities to increase the data and their reliability, around the
lake area, by constant monitoring of lake withdrawals, groundwater inflow (by
a piezometric network), and level observations. Regarding this last aspect, the
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addition of at least one more weather station (including a hydrometer) on the
opposite side of the lake, as the literature suggests (especially for accounting
for the wind effects on lake levels), has been requested. On the other hand,
the work is now proceeding to the application of the modeling to other lakes
in different regions of the world, specifically trying to account for groundwater
and surface runoff.

The third chapter points out that the saturation of the sub-cloud layer in CRMs
allows the localization of the convection in moist regions by weakening the nega-
tive influence of cold pools. This negative moisture feedback in a cloud-resolving
model can lead to lower values of aggregation metrics and to a weaker effect
of the organized state on the average domain statistics (less drying). There is
a chance that this effect, found in these two models, could be found also in
other CRMs. Thus, the research will be expanded with the analysis of the whole
CRMs used in the RCEMIP project, by correlating the degree of organization in
the models and the degree of saturation of the sub-cloud layer. The other pos-
sible extension of the work will be relating the cold pool effect and presence to
the mixing in the boundary layer, given their known tight relationship in the lit-
erature. Moreover, it has to be noted here that the two cloud-resolving models
represent two different states of the tropical climate. While the SAM model, is
more similar to what is observed in the tropics, regarding the radiative heating
profile, it also presents an unrealistic amount of low clouds. In the same way,
the ARPS model presents an unrealistic amount of high clouds, but its greater
imbalance between the radiative cooling and the surface fluxes makes it closer to
the RCE equilibrium observed in the tropics on a daily basis. This underlines the
fact that both models are contained in the statistical oscillation of atmospheric
tropical convection and therefore could be included in climate sensitivity studies.

The fourth chapter assessed that the ECMWF ensemble forecasts model can
adequately reproduce medicanes with their tropical-like features, even with the
use of only 8 members and three starting dates. It also points out that the
inclusion of the uncertainty in the physical, and more specifically, in the con-
vective parameterization, leads to an improvement in the simulation of these
events. Indeed, the ensemble forecasts with the SPP, generally show similar re-
sults to that obtained with the initial condition perturbation ensemble forecast.
There is an improvement in the simulation of medicanes tropical traits by ini-
tializing the simulation when the cyclone already exists, due to improved initial
conditions. Indeed, specifically in the case of Trixie, the early start produced
a southeastern shift of the cyclone compared to the analysis track and a lack
of reproduction of the warm core transition. The expansion of the work will
be aimed at understanding the physical processes behind these results. In spe-
cific, the research objective will be to understand which processes in the model
physics are behind the intensification of these three storms and their transition
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to the tropical-like phase or lack thereof (specifically in the Trixie case). This
will be carried out with a specific investigation of the effect of the physical pa-
rameterizations perturbations, focusing on convection and convective heating.

The work conducted in this thesis used a different approach from the histori-
cally used approach of simulating phenomena at the synoptic scale (cyclones)
and then descending to the convective scale with more observationally and
numerically resolved modeling. In contrast, the use of global-scale modeling
(reanalysis) by including local data and the use of non-hydrostatic modeling
with prognostic equations of moist variables, made it possible to study convec-
tive phenomena and the resulting statistical variability by including processes
occurring at the microphysics and turbulence scales in the energy balance in the
scales solved by the energy flux conservation equations. The approach used fol-
lows the strand of global modeling that seeks to build a digital twin of the Earth
to study its climate and climate variations by including in the modeling every
relevant aspect of the processes occurring in it, and in particular all the scales
that contribute to the spectrum of climate variability that results from convec-
tive processes. Some of the climate feedback that makes convection-related
events more extreme can be derived from the modeling that is the result of the
research conducted and will be the subject of further research.
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Data Availability Statement:
Regarding the modeling of the lake water mass balance modeling, the lake level
data that support the findings of the study are freely available at https://

annali.regione.umbria.it/, the LSWT dataset GloboLakes is freely avail-
able on the CEDA (Centre for Environmental Data Analysis) Archive (Carrea
and Merchant, 2019) and the ERA5 reanalysis data are freely available on the
Copernicus Climate Data Store (C3S, 2020).

Regarding the Cloud Resolving Modeling, the SAM and the ARPS models
output used in the study are publicly available via the Zenodo online repos-
itory. The SAM output is available at https://doi.org/10.5281/zenodo.
7310136 and the ARPS output is available at https://doi.org/10.5281/
zenodo.6953873. The SAM model source code is freely available and can be
found at http://rossby.msrc.sunysb.edu/~marat/SAM.html. The ARPS
model source code is freely available and can be found at https://arps.caps.
ou.edu/arpsdown.html. The Jupyter Notebooks used to produce the Figures
and Tables are available at https://doi.org/10.5281/zenodo.7357619.

Regarding the ensemble forecast simulations, the output of the IFS ensem-
ble forecasts and the operational analysis data are available upon request on
the MARS Archive at https://www.ecmwf.int/en/forecasts/dataset/

ecmwf-research-experiments and the precipitation dataset GPM-IMERG
used for validation is freely available on the NASA data archives at https:

//gpm.nasa.gov/data/imerg.
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A. The FLake model equations

The Fresh-water Lake model (FLake) (Mironov et al., 2010) is a one-dimensional
model representing fresh-water lakes, which predicts their vertical temperature
structure on timescales from hours to years, for lakes of various depths (up to
60 m). FLake has been implemented on IFS in subsequent steps, with some de-
gree of simplification given that the IFS is a global model which can’t describe
global lakes in detail. FLake has been implemented and tested at a global scale
in the IFS, (Dutra et al., 2010) and its forecast sensitivity has been assessed
(Balsamo et al., 2012). The introduction of FLake in the IFS has permitted
the treatment of lakes, not as ocean points, where only grid-scale lakes (lake
fraction larger than 50%) were considered, but as individual entities. With
FLake, inland water bodies that are fully or partially covering the grid box are
considered and modeled prognostically, evolving with the same grid resolution
and timestep of the atmospheric and land surface processes in the IFS. A new
tile has been added to the land surface model H-TESSEL to represent the lake
interface with the atmosphere (Figure A.1).

The vertical temperature profile specified in FLake consists of a mixed layer at
top of a bottom layer as it is shown in Figure A.1. In the mixed layer, there is
a uniform distribution of temperature, and at the bottom layer, there is a ther-
mocline, with its upper boundary located at the mixed layer bottom, and the
lower boundary at the lake bottom.The prognostic variables are the mixed layer
depth dML(m) and temperature TML(

◦C), the mean layer water temperature
TMN (◦C) and the bottom layer water temperature TBL(

◦C), the shape factor
ξML adimensional.
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Fig. A.1: Schematic representation of the new lake tile modeled by Flake in the
IFS. The lake is parameterized in two layers, a mixed layer at the top with uniform
temperature and a bottom layer with a thermocline. The skin temperatureTs,k of the
lake is then passed to the atmospheric model to compute surface fluxes.

The parameterization for the mixed layer depth is done by taking into account
the mixing that is generated by wind and by volumetric heating by solar ra-
diation (Mironov, 2008). The parameterization for the thermocline is done
according to the self-similarity concept (assumed shape of a temperature-depth
curve) (Mironov, 2008). This assumption is based on observational studies.

FLake requires as input the lake location and the lake depth and the lake initial
conditions. It runs over every grid box or the tile fraction with no bottoms
sediments and no turbulent flux, with fractional ice on the surface and snow
parameters used mainly for albedo calculation. The two-layer parameterization
of the temperature profile is:

Tl(z) =

{
TML if 0 < z ≤ dML

TML − (TML − TBL)ΦTl
(ζ) if dML < z < dl

(A.1)

as a function of depth z. TBL(
◦C) is the temperature at the bottom of water

body (z = dl(m)), and ΦT = [TML − Tl(z, t)]/[TML − TBL] is a dimensionless
function of dimensionless depth ζ = [z/dML(t)]/[dl/dML(t)] which satisfies
the boundary conditions of ΦT (0) = 0 and ΦT (1) = 1.
Then TMN (◦C) the mean layer temperature, is obtained integrating A.1:

TMN = TML − ξML

(
1− dML

dl

)
(TML − TBL) (A.2)
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where ξML(m) is the shape factor of the thermocline temperature profile, linked
to the dimensionless function of dimensionless depth ζ (Mironov, 2008). This
equation links together the temperature of the two layers and the depth of the
two layers.

By integrating the heat transfer equation over the vertical z, from 0 to dl (depth
of the lake), the equation for the mean temperature of the water column is
obtained as:

dl
dTMN

dt
=

1

ρwcw

[
Gs + Is −GBL − I(dl)

]
(A.3)

where cw = 4.2103Jkg−1K−1 is the specific heat of water, Gs(Wm−2) is the
sum of the sensible SH(Wm−2), latent heat fluxes LH(Wm−2) and the net
heat flux due to long-wave radiation ILW (Wm−2) at the air-water interface:
Gs = LH + SH + ILW , Is (Wm−2) is the value of the heat flux due to solar
radiation, and GBL(Wm−2) is the heat flux through the lake bottom. The
radiation heat flux I(dl) that penetrates the water is the surface value of the
incident solar radiation flux from the atmosphere multiplied by 1− α, where α
is the albedo of the water surface with respect to solar radiation. The equation
of heat budget of the mixed layer instead can be written as:

dML
dTML

dt
=

1

ρwcw

[
Gs + Is −GML − I(dML)

]
(A.4)

where GML(Wm−2) is the heat flux at the bottom of the mixed layer. This
equation assumes two variants for stationary and retreating mixed layer (where
ddML/dt ≤ 0) and for deepening mixed layers (where ddML/dt > 0). A
detailed description of the equations is behind the scope of this article, more
information is reported in (ECMWF, 2018) and (Mironov, 2008).
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B. Verification scores

Wilks (2011) provide extensive details on many verification scores, as well as
the ECMWF web page (https://confluence.ecmwf.int/x/4fbUBw) on statistical
concepts and probabilistic data. The verification procedure involves a compar-
ison between matched pairs of forecasts and the observations to which they
pertain. In the following, the verification scores used in the manuscript are
described.

B.1.Relative Operating Curve
The Receiver Operating Characteristic (ROC) is a measurement of the forecast’s
ability to distinguish between two alternative outcomes and thus, measures
resolution. The ROC was first introduced to meteorology by Mason in 1982 and
is obtained by plotting the probability of detection (POD) against the probability
of false detection (POFD) using a set of increasing probability thresholds. The
ROC area, which is the area under the ROC curve, is often used as a score.
A score of 0.5 indicates no skill and a score of 1 indicates perfect skill. It’s
important to note that ROC can also be computed for deterministic forecasts
using different criteria such as median, certain percentiles, or chosen thresholds
of interest instead of the probability thresholds used in probabilistic forecasts.

B.2.Frequency Bias score
The Bias is a measure of how the frequency of forecasted events (F) compares
to the frequency of observed events (O):

FB =
F

O
(B.1)
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A forecast is considered unbiased if the value is 1. A value greater than 1
indicates an overpredicting forecast, and a value less than 1 indicates an under-
predicting forecast.

B.3.Brier score
The Brier score (Brier et al., 1950), introduced by Brier in 1950, is a measure
of the accuracy of probability forecasts in terms of predicting whether or not an
event occurred. It is defined as the mean squared error of probabilistic forecasts,
with events assigned a value of 1 and non-events assigned a value of zero. It
has a mathematical structure similar to the Mean Square Error (MSE).

BS = (p− o)2 (B.2)

Thus, BS measures the difference between the forecast probability of an event
(p), and its occurrence (o). The Brier score ranges from 0 to 1 with a perfect
score of 0. Indeed it is a measure of the mean squared probability error of
a forecast compared to a reference dataset such as observations, analyses, or
climatology. The Brier Score for the forecast is calculated as the mean squared
probability error of the forecast against observations or analyses over a given
period. A lower Brier Score indicates a more accurate forecast, with a score
of 0 indicating a wholly accurate forecast and a score of 1 indicating a wholly
inaccurate forecast.

B.4.Continuous Ranked Probability Score
The Continuous Ranked Probability Score (CRPS) is a measure of how good
forecasts are in matching observed outcomes and it generalizes the concept of
the Mean Absolute Error (MAE) to the case of probabilistic forecasts. The
CRPS is commonly employed to assess the accuracy of probabilistic forecasting
models. Unlike metrics such as MAE, it takes into account the fact that fore-
casts are probabilistic, but observations are definite. The CRPS evaluates the
overall forecast distribution, rather than focusing on a particular point. CRPS is
calculated by comparing the Cumulative Distribution Functions (CDF) for the
forecast against a reference dataset (observations, or analyses, or climatology)
over a given period. It is defined as the integral of the difference between the
cumulative distribution function (CDF) of the ensemble forecast and the CDF
of the observed value, over all possible forecasted values. The mathematical
formulation of the CRPS for an ensemble forecast is given by:

CRPS =

∫ ∞

−∞
(F (x)−H(x− o))2dx (B.3)

Where F(x) is the predicted cumulative distribution function of the ensemble
forecast H(x - o) is the Heaviside step function, with o being the observed value
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and x is the forecasted value. Alternatively, it can be written as:

CRPS =
1

N

N∑
i=1

(F (xi)−H(xi − o))2 (B.4)

Where N is the number of ensemble members and xi is the ith ensemble member.
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Lükő, G., Torma, P., and Weidinger, T.: Intra-Seasonal and Intra-Annual Vari-
ation of the Latent Heat Flux Transfer Coefficient for a Freshwater Lake, At-
mosphere, 13, 352, 2022.

Maberly, S. C., O’Donnell, R. A., Woolway, R. I., Cutler, M. E., Gong, M.,
Jones, I. D., Merchant, C. J., Miller, C. A., Politi, E., Scott, E. M., et al.: Global
lake thermal regions shift under climate change, Nature Communications, 11,
1–9, 2020.

Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone,
D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin,
N. G., Prowse, T. D., Stewart, K. M., and Vuglinski, V. S.: Historical Trends in
Lake and River Ice Cover in the Northern Hemisphere, Science, 289, 1743–1746,
2000.

144



References

Magnusson, L., Thorpe, A., Buizza, R., Rabier, F., and Nicolau, J.: Predicting
this year’s European heat wave, ECMWF Newsletter, 145, 4–5, 2015.

Maher, P., Gerber, E. P., Medeiros, B., Merlis, T. M., Sherwood, S., Sheshadri,
A., Sobel, A. H., Vallis, G. K., Voigt, A., and Zurita-Gotor, P.: Model hier-
archies for understanding atmospheric circulation, Reviews of Geophysics, 57,
250–280, 2019.

Mahmood, R., Jia, S., Mahmood, T., and Mehmood, A.: Predicted and pro-
jected water resources changes in the chari catchment, the lake Chad basin,
Africa, Journal of Hydrometeorology, 21, 73–91, 2020.

Mahto, S. S. and Mishra, V.: Does ERA-5 outperform other reanalysis products
for hydrologic applications in India?, Journal of Geophysical Research: Atmo-
spheres, 124, 9423–9441, 2019.

Majumdar, S. J. and Torn, R. D.: Probabilistic verification of global and
mesoscale ensemble forecasts of tropical cyclogenesis, Weather and Forecasting,
29, 1181–1198, 2014.

Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kühnlein, C.,
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