Titolo

Responsabile scientifico

Ente finanziatore

Anno

FIS2021-Advanced Grant “SMS-SAFEST: Smart Masonry enabling SAFEty-assessing STructures after earthquakes"

Prof. Filippo Ubertini

Ministero dell’Università e della Ricerca (MUR)

2024-2029

utf 8image

Presupposti e motivazioni del progetto

Masonry structures, including historic buildings, represent the vast majority of the European built heritage.

Many of these buildings are in a poor state of preservation due to material ageing and degradation and are located in the Mediterranean area where they are exposed to a severe seismic hazard. The preventive conservation of historic buildings across the whole Europe is therefore an urgent priority that demands for appropriate Structural Health Monitoring (SHM) solutions that link the field observation of the in-service response of a structure to its structural integrity. To-date, SHM is yet to be broadly implemented in the case of masonry structures because off-the-shelf sensors are hardly scalable to complex masonry structures, have limited durability and entail transmission issues, difficulty of access and high costs.

Multifunctional strain-sensing and damage-sensing structural materials can represent a spectacular solution to monitoring challenges revolutionizing the field of SHM. Recent advances in Nanotechnology have led to the development of so-called smart concretes that are electrically conductive cement-based composites with piezoresistive properties, based on the incorporation of carbon-based micro- and nano-fibers into cementitious matrices. Their strain sensitivity originates from the property of the materials to exhibit variations of their internal resistivity and impedance, under variations of their mechanical deformation.

Recently, the PI has developed smart concrete applications based on the use of Multi-Walled Carbon Nanotubes (MWCNT) as conductive doping and has proposed the application of a similar concept in the field of masonry structures, through the introduction of smart bricks, that are clay bricks doped with stainless steel microfibers able to provide an electrical output proportional to their state of strain. Both technologies of smart concretes and smart bricks can still be considered in their development stages, with the latter being indeed at its very birth. Among bottlenecks that need further investigations are: material fabrication, electrode type and deployment, measurement electronics, electromechanical modeling and machine learning for automated earthquake-induced damage identification.

Responsabile Scientifico: Prof. Filippo Ubertini

Durata: 5 anni

Finanziamento: 1.499.928,00

Cup Unipg: J93C23002030006

Titolo

Responsabile scientifico

Ente finanziatore

Anno

MORE4WATER: COMBINED MONITORING AND FORECAST FOR A SUSTAINABLE MANAGEMENT OF WATER RESOURCES AND TIMELY ADAPTATION TO DROUGHT

Prof.ssa Silvia Meniconi, Università di Perugia (capofila)

Università di Perugia

IT, Instituto de Telecomunicacoes

UNIVALI

TUCEP

AcegasApsAmga

2024

loghi more 4 water logo more 4 water 2 logo fin ue  logo more 4 water 3

Presupposti e motivazioni del progetto

The MORE4WATER project aims at developing a novel technology that uses efficient real-time monitoring to improve the forecast of water availability and, consequently, the management and governance strategies of water distribution and transmission networks (WNs) and irrigation systems (ISs). The proposed technology will drastically reduce the impact of water drought and prepare for the next generation of WNs and ISs, which must be more monitored, more controlled, more efficient, sustainable, and “smart”. The natural recipients of such innovation activities are the stakeholders. Accordingly, the MORE4WATER project derives from four concerns. The first is that a large part of freshwater is contained in groundwater and a much smaller part in freshwater lakes, with most of the freshwater (approximately 70%) used in irrigation systems. The second concern is that approximately half of the world’s population is currently subject to severe water scarcity for at least some part of the year. The third is that meteorological droughts (periods of persistent low precipitation)—one of the effects of climate change—exasperate deficits in the water supply. This leads to social tensions among potential users and calls upon public authorities and service operators to adopt delicate decisions concerning the allocation of resources involving both knowledge of highly complex technical data and socio-economic assessments. The fourth concern is the heterogeneity of the physical, political, and socio-economic contexts of the transboundary water resources, which makes their management difficult. The project’s strategy to counter the above concerns is divided into four actions. The first action is to tune “user-friendly” models for simulating and forecasting the water elevation in aquifers and lakes based on the combined use of global atmospheric datasets (reanalysis) and ground measurements executed by smart and distributed sensors. Such a model, called AQUILA, simulates the water table elevation of aquifers and the level of lakes, focusing on the key regulating mechanisms: groundwater recharge for the former, and precipitation and evaporation for the latter. At the same time, a wireless sensor network capable of acquiring local ground measurements and monitoring WNs and ISs is developed. The second action is to define innovative criteria for managing both WNs and ISs to ensure increasing available water in the long term. Such criteria, in the framework of the digital transition of these systems, address leakage reduction, pressure control, and energy efficiency within a comprehensive methodology. In particular, attention is focused on an appropriate leakage reduction strategy—and then the refinement of more efficient technologies—which is the most environmentally friendly and cost-effective method for acquiring “new” water resources (or better, not to waste a large part of the existing freshwater!). Within the third action, applying the model for monitoring and timely adaptation to drought may strongly enhance the implementation of the existing legal frameworks for the management and equitable sharing of transboundary water resources, including aquifers. The fourth action includes proactive dissemination, communication, inter-sectorial collaboration, and exploitation of the project results. Accordingly, the proposal relates to Topics 1, 2, and 3. All the consortium partners (University of Perugia, UNIPG, in Italy; Instituto de Telecomunicações, IT, in Portugal; Universidade do Vale do Itajai, UNIVALI, in Brazil; ACEGASAPSAMGA, AAA, and TUCEP in Italy) have previous experience in projects linked to the MORE4WATER project. Moreover, several activities demonstrate the consolidated academic and scientific collaboration between consortium partners.

Responsabile Scientifico: Prof.ssa Silvia Meniconi

Durata: 36 months

Finanziamento: 798150 €

Cup Unipg: J93C23002030006

 

Titolo

Responsabile scientifico

Ente finanziatore

Anno

FURIOUS: Versatile FUran-based polymeRs for strIct and high value applicatiOns in packaging, aUtomotive and underwater environmentS

Prof.ssa Debora Puglia, Università di Perugia

Horizon Europe (call HORIZON-JU-CBE-2022)

2024

thumbnail eu cofunded logo furious

Presupposti e motivazioni del progetto

L'obiettivo del progetto FURIOUS è sviluppare nuovi polimeri versatili a base di 2,5-FDCA per arricchire il portafoglio di soluzioni monomateriali innovative a base biologica proposte per sostituire le plastiche tradizionali. I materiali sono opportunamente progettati dal punto di vista chimico per soddisfare una serie di proprietà target richieste per tre differenti settori di applicazione, dove altre bioplastiche non rispondono a tutti i requisiti o le plastiche tradizionali sono ancora ampiamente utilizzate: imballaggi biomedici ed elettronici (in cui sono necessarie resistenza alla sterilizzazione e alte proprietà barriera), settore automobilistico (in cui la resistenza agli agenti atmosferici UV e le proprietà antibatteriche intrinseche sono le caratteristiche principali) e dispositivi subacquei (in cui sono richieste fotoreattività e biodegradabilità in acqua di mare). Per raggiungere tale obiettivo, verranno utilizzate tutte le strategie sintetiche consolidate, con particolare attenzione allo sfruttamento di processi a basso impatto ambientale e alla minimizzazione dei costi di produzione. La versatilità dei materiali FURIOUS sarà valutata anche in relazione alla loro processabilità, che è un'ulteriore caratteristica obbligatoria da verificare per il reale ingresso sul mercato. Verranno validate sia tecnologie consolidate, come lo stampaggio a iniezione e l'estrusione, sia tecnologie più innovative, come l'elettrofilatura, la stampa 3D e la stereolitografia. Infine, ma non meno importante, ai nuovi polimeri a base di furano verrà conferita una riciclabilità intrinseca per un riciclaggio più ecologico e meccanico e per nuove strategie di riciclaggio enzimatico. Nel caso degli imballaggi, sarà valutata anche la compostabilità, mentre sarà verificata la biodegradabilità dei sensori subacquei in ambiente marino, una delle caratteristiche principali richieste ai polimeri. I risultati innovativi di FURIOUS contribuiranno allo sviluppo di un database Sustainability-by-design, utilizzato per valutare e prevedere le prestazioni dei nuovi materiali e per ricavare una serie di linee guida per le applicazioni finali.

Responsabile Scientifico: Prof.ssa Debora Puglia

Durata: 01/06/2023 – 31/05/2027

Finanziamento: 513 750,00 €

Cup Unipg: J55F21001310001