Insegnamento AEROSPACE MATERIALS
Nome del corso | Ingegneria dei materiali e dei processi sostenibili |
---|---|
Codice insegnamento | A002446 |
Curriculum | Materiali per l'aerospazio |
Docente responsabile | Maurizio Natali |
CFU | 10 |
Regolamento | Coorte 2023 |
Erogato | Erogato nel 2024/25 |
Tipo insegnamento | Obbligatorio (Required) |
Tipo attività | Attività formativa integrata |
Suddivisione |
HIGH TEMPERATURE MATERIALS FOR AEROSPACE APPLICATIONS
Codice | A002448 |
---|---|
CFU | 5 |
Docente responsabile | Maurizio Natali |
Docenti |
|
Ore |
|
Attività | Caratterizzante |
Ambito | Ingegneria dei materiali |
Settore | ING-IND/22 |
Tipo insegnamento | Obbligatorio (Required) |
Lingua insegnamento | INGLESE |
Contenuti | This course will provide a detailed overview of high-temperature materials -also known as Thermal Protection System (TPS) materials - and will cover the manufacturing, the traditional and advanced thermal and thermo-mechanical testing. TPS materials are used in the production of the heat shields of probes and space vehicles and are also used in the production of chemical propulsion systems such as liquid fueled rocket engines or solid (or hybrid) rocket motors. At the end of the course, the student will be able to correctly identify the use of each class of high-temperature materials, helping her/him to get quickly integrated in the sector of the aerospace industry. |
Testi di riferimento | - P.K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC Press, [3 or 4 ed.]. - Ronald Gibson, Principles of Composite Material Mechanics, McGraw-Hill Science/Engineering/Math. - G.F. D'Alelio and J. A. Parker, Ablative Plastics, 1971. - Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, Fundamentals of Heat and Mass Transfer [6 ed.]. Other lecture notes or papers provided by the teacher. |
Obiettivi formativi | The student will be guided to understand the fundamental concepts behind the theory of TPS materials. At the end of the course the student will possess the basic tools at the base of the design of TPS materials. |
Prerequisiti | Basic knowledge of mathematics, physics, chemistry, structural mechanics, polymers. |
Metodi didattici | The course will based on lectures and will make extensive use of Powerpoint presentations, theoretical exercises and laboratory experiences. The course will be balanced in terms of theoretical and experimental concepts, providing a unique approach aimed at maximize the effectiveness of the teaching activity. |
Altre informazioni | Written composition + oral exam |
Programma esteso | Introduction to the different hyperthermal environments: the atmospheric reentry flight and classification based on heat fluxes, generalities on chemical propulsion, liquid engines and solid or hybrid rocket motors, specific and total impulse, the de Laval nozzle, structural materials the motor case, thrust vectoring; - Introduction to high temperature materials or Thermal Protection System (TPS); - Non-ablative TPS materials for atmospheric reentry: generalities on non- ablative TPS materials, low density ceramic materials, manufacturing processes, diffusion and sintering, Reusable Surface Insulation, the Space Shuttle heat shield; - Ablative TPS materials: refractory metals, ceramics, carbon materials, graphite, mechanisms of erosion and thermo-oxidation, introduction to polymeric ablative TPS materials, application examples in rocket propulsion; - Insulating materials: elastomeric matrix (EPDM and silicone), production methods (calendering, kneader, etc.), examples of EPDM/Kevlar formulations, SLA-561V, DC 93-104; vulcanization, peroxides, specific applications, rigid matrix insulating materials, production methods, wood, cork (P50); - Fiber-reinforced TPS materials: matrix classification, thermal and dimensional stability, phenolic matrices, cure cycles, carbon yield, generalities on fibers (glass, basalt, silica, carbon), surface treatment, fillers, thermal and mechanical properties of fiber-reinforced TPS materials; - Nanostructured TPS materials: introduction, differences between low and high heat flux ablation mechanisms; - Carbon/phenolic type fiber-reinforced TPS materials: fiber fabrication process (Rayon, PAN and pitch), differences between fiber types in terms of chemical functionalization and affinity to different polymer matrices, thermal and mechanical properties, production techniques of carbon/phenolic composites, applications, hints on sizing a carbon/phenolic laminate (new review); - Basic thermophysical characterization of TPS materials: thermodynamics, definition of heat capacity, thermal conductivity, temperature measurement theory, Seebeck effect, types of thermocouples, data acquisition systems, thermal characterization techniques (TGA/DTG/DTA, DSC, LFA), dimensional stability, characterization techniques (TMA), role of heating rate; - Advanced thermophysical characterization; - Advanced characterization of TPS materials: thermal conditions, chemical conditions, mechanical conditions, types of torches (plasma,arc-jet, HVOF, etc.), oxy-acetylene torch, determination of heat flux, calibration, types of calorimeters (slug, Gardon gages, etc.), role of oxidizer/fuel ratio, test examples, morphological characterization of flame-exposed surface, definition of mass loss and erosion rate, post-test and real time erosion rate measurement systems; - Advanced characterization of TPS materials using liquid propellant engine-based test beds, solid propellant engine-based test beds, NASA MSFC test system, hybrid engine-based test beds, X-ray analysis of TPS materials. - Ultra lightweight TPS materials: Lightweight Ceramic Ablators, Phenolic Impregnated Carbon Ablators, manufacturing methods; - Introduction to modeling ablative phenomena: introduction to mathematics governing the degradation of materials, degradation kinetics (Friedman's methods, Ozawa, etc.), Arrhenius' law determination of kinetic parameters by TGA, rule of mixtures, modeling of the thermal conductivity and heat capacity also as a function of temperature, mechanical erosion, differences between surface and volume ablation. |
PROCESSING AND PROPERTIES OF COMPOSITES
Codice | A002447 |
---|---|
CFU | 5 |
Docente responsabile | Maurizio Natali |
Docenti |
|
Ore |
|
Attività | Caratterizzante |
Ambito | Ingegneria dei materiali |
Settore | ING-IND/22 |
Tipo insegnamento | Obbligatorio (Required) |
Lingua insegnamento | INGLESE |
Contenuti | Il corso fornisce le basi per la comprensione dei materiali compositi a matrice polimerica. |
Testi di riferimento | - P.K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC Press, [3 or 4 ed.]. - Ronald Gibson, Principles of Composite Material Mechanics, McGraw-Hill Science/Engineering/Math. |
Obiettivi formativi | Lo studente sarà guidato nella comprensione dei concetti fondamentali alla base della teoria dei materiali compositi a matrice polimerica. |
Prerequisiti | Conoscenze di base di matematica, fisica, chimica, scienza delle costruzioni, polimeri |
Metodi didattici | l corso è articolato in lezioni frontali con l'ausilio di presentazioni Powerpoint, video, esercitazioni, con integrazioni di esperienze di laboratorio. Il corso sarà bilanciato in termini di concetti teorici e sperimentali forniti allo studente attraverso un approccio unico volto a massimizzare l'efficacia dell'attività didattica. |
Modalità di verifica dell'apprendimento | Written composition and/or oral exam. |
Programma esteso | Introduction, materials, mechanics, performance, manufacturing, design, metal, ceramic, and carbon matrix composites, polymer nanocomposites |